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The Formation of Homogeneous Item Sets

When Guessing is a Factor in Item Responses

One of the fundamental assumptions of most latent trait models is that
the items in the pool of interest measure a single latent trait (Lord and
Novick, 1968). Although some item pools do approximate the conditions speci-
fied by this assumption (e.g., vocabulary, arithmetic computation, digit span,
etc.), in many cases item pools do not automatically fulfill the requirements
of a one-dimensional latent space. For example, most achievement tests de-
signed using a table of specifications are not unidimensional. Further, it
is questionable whether some criterion-referenced test item domains measure
a single dimension. Therefore, some procedure is needed to form unidimensional
item sets for use with latent trait models.

Unfortunately, the procedures commonly used to form item sets that are
homogeneous in the ability measured have been criticized because of some basic
inadequacies. Most of these criticisms stem from the use of items that are
dichotomously scored. Factor analysis, for example, was derived for use with
continuous variables. Since its basic model reproduces the observed score
from a linear combination of continuous variables, there is no way that dicho-
tomous responses can be adequately modeled. A symptom of this problem is the
difficulty factors obtained when phi coefficients are factor analyzed. In an
attempt to alleviate this problem, tetrachoric correlations are often used in
place of phi coefficients. However, these correlations may not yield correla-
tion matrices that have the appropriate properties for factor analysis (i.e.,
positive semidefinite). The end result of these problems is that the most
commonly used multivariate sorting procedure is theoretically inadequate for
forming unidimensional item sets when dichotomously scored items are used.

In response to the problems in the use of factor analysis with dichotomous
variables, Christofferson (1975) has developed a factor analysis procedure
specifically for this special case. In order to avoid the problems stemming
from the use of correlation coefficients, he uses the proportions in two-way
tables of item responses as the basic data for determining the factor structure.
A generalized least squares procedure is used to estimate error free proportions,
and from these, estimate the parameters of the factor analysis model. The ob-
tained parameter estimates have been shown to be consistent and a chi-square
test has been developed to test the number of significant factors. Although
this procedure would seem to be the solution to the item factoring problem, it
can only be used on a maximum of 25 items because of computer storage and com-
putational time constraints. Thus, the procedure is not practical for most
item pool construction situations.

Another approach has been taken by Divgi (1980) to solve the item pool
dimensionality problem, but this procedure only provides a test for the pre-
sence of a single factor, rather than a procedure for sorting items. In
Divgi's procedure, the probability of a correct response to an item (expected
response) determined from a latent trait model is subtracted from the actual
response to that item to obtain a residual. These residuals are then intercor-
related over items and the resulting correlation matrix is factor analyzed using
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the principal components procedure. If any strong factors are left in the
correlation matrix, it is proposed that this is evidence that unidimensionality
does not hold. This procedure is purported to be better than the usual factor
analysis of dichotomous variables because the correlations are based on the
continuous residuals, rather than binary data. However, this procedure is very
new and has not been critically evaluated. In any case, it does not yield a
procedure for forming unidimenslonal item sets.

In addition to the above procedures for determining the dimensionality
of item pools, cluster analysis and multidimensional scaling procedures are
also available. These procedures make fewer assumptions, but their usefulness
is unknown. Moreover, a review of the literature has not found any application
of these procedures to the unidimensionality issue.

The end result of the confusion caused by the lack of good procedures for
forming unidimensional item sets is that often item pools are sorted subjective-
ly, without the aid of an analytic procedure. In many cases the dimensionality
of the item pool is not checked at all. Obviously, an easily used procedure
is needed to develop unidimensional item sets. One of the purposes of this
research is to find such a procedure.

Unfortunately, the mere fact that dichotomously scored items are being
used is not the only problem that affects the determination of the dimension-
ality of an item pool. For multiple-choice items, guessing is another factor
that may affect the observed dimensionality. A review of the literature on
latent trait theory and multivariate clustering procedures has found no studies
on the effect of guessing on dimensionality, so the magnitude of these effects
is unknown. However, work has been done on the effects of guessing on item
analysis, correlation, and reliability. Some hints concerning guessing effects
can be discovered there.

Carroll (1945) studied the effect of varied item difficulty and guessing
on the magnitude of correlations between dichotomously scored items using
the "knowledge or random guessing model". He found that variations in both
difficulty and chance success bring about a reduction in the size of the
phi coefficient between items. He also discussed the use of tetrachoric cor-
relations with dichotomously scored test items, and showed that variations
in difficulty had no effect on the tetrachoric correlations when no guessing
was present and when the bivariate normal assumption was met. When guessing
was present in the data the magnitude of the obtained correlations was lowered.
This effect was stronger for more difficult items. Along with his analysis
of the effects of guessing and difficulty on these two types of correlations,
Carroll also developed correction formulae to compensate for the reduction
in correlation. The correction for the tetrachoric correlation will be de-
scribed later in this report, since it was used in the research reported here.

Plumlee (1952) expanded on Carrol's work to determine the effect of vari-
ation in difficulty and guessing on item-test correlations and reliability.
She developed an equation in her article that showed the relationship between
biserial correlations determined with and without guessing present, and
another equation that showed the corresponding relationship for parallel form
reliability. In both cases, the equations predicted a reduction in the magnitude
of the statistics with the presence of guessing.

F . . . ...
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Plumlee then checked the accuracy of her equations by determining the
item discrimination values and reliability using items administered in comple-
tion and multiple-choice form. The equations were used to predict the values
for the statistics for the multiple-choice tests from the completion test stat-
istics. The predictions were close, but there was a tendency to over estimate
the statistics. The differences were explained by the inaccuracy of the "know-
ledge or random guessing model".

Mattson (1965) also determined the effects of guessing on reliability,
but he used a different approach than Plumlee. Mattson used a binomial error
model to estimate the standard error of measurement and the true score variance.
He then showed how the true score variance is reduced by guessing effects. From
the standard error and true score variance terms, he developed a formula for
the reliability of a test when guessing is a factor. The reliability was shown
to decline with increased guessing probability.

A totally different approach to the determination of the effects of
guessing on reliability was taken by Denney and Remmers (1940). They felt
that the addition of choices to a multiple-choice item was, in fact, analagous
to lengthening the test. Thus, the reliability of the test with more alterna-
tive choices could be determined from the test with fewer choices using the
Spearman-Brown formula (a four choice test is twice as long as a two choice
test). In their article they present data tnat showed that the Spearman-Brown
formula does model the guessing effect fairly well. In that study, vocabulary
items were administered with two, three, four, or five choices and the reliabi-
lity was determined for each of the test forms using the split-half method.
In their article, as in all of the others, the reliability decreased with in-
creased guessing.

To summarize the various theoretical positions, the proportion of true
variance in a set of test scores was plotted against guessing level for a test
with a no-guessing reliability of .81. The results are shown in Figure 1. Four )
plots are shown on this graph. The first is the predicted reliability of a
test as a function of guessing for a test with a no-guessing reliability of .81.
This plot was produced using Equation 30 developed by Carroll (1945). A 50 item
test composed of items with .50 traditional difficulty was assumed in making this
plot. The second plot shows the effects of guessing on the squared biserial
correlation between an item of .5 traditional difficulty and total score when
the no-guessing correlation is .9. This relationship was determined from
Equation 24 in the article by Plumlee (1952). The third line shows the relation-
ship between reliability and guessing given in Table 1 from an article by Mattson
(1965). A no-guessing reliability of .8 was assumed for this plot. The fourth
line shows the reliability as a function of guessing level as determined by the
method proposed by Denney & Remmers (1940). The values were derived using the
generalized Spearman-Brown formula, assuming a reliability of .81 for a test
composed of items with 10 alternatives.

As can be seen from this figure, the predicted reliabilities are quite
different. Other than concluding that the reliability declines, no consistent pre-
diction can be made about the magnitude of the decline. The implication of these
data to the proportion of common variance in a test is that guessing effects will
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cause the common variance to decrease. The lower correlations suggested by
Carroll's work would also imply that the number of factors (in a factor analytic
sense) would increase.

Since no clear cut findings were discovered in the review of the litera-
ture concerning the effects of guessing on multidimensional data reduction
techniques, the present research study was designed to further explore these
effects. More specifically, the purpose of the research was to evaluate vari-
ous procedures for forming homogeneous item sets, and to determine the effects
of guessing on the techniques. Three approaches were taken to achieve this
goal. First, a theoretical model was developed, and guessing effects were
predicted with the model. Secondly, simulated data were generated using the
theoretical model, and the predicted results were checked by actual analysis
of these data. Third, a real data-set was selected and analyzed to determine
how well the theoretical and simulated results generalized. Conclusions were
drawn from consistent patterns of findings from these three sets of results.

The Theoretical Model

The basic model used here to determine the effects of guessing on the
proportion of common variance in an item is a modification of the true score
model presented in Lord and Novick (1968, pp. 30-38). A univariate model willbe presented first, followed by a multivariate generalization.

Suppose that a population of examinees is normally distributed on a
unidimensional trait, T, that is required, to some extent, for performance
on a test item. Without loss of generality, this distribution can be assumed
to have a mean of zero and a variance of one. That is, T d N(O, 1). Suppose
further that the trait measured by a test item, T', is not-exactly the same
as trait T, but that it has a positive relationship with T. If the correla-
tion between the person trait, T, and the trait measured by the item, T', is
given by "a", then the score on trait T' for Person j, ti, can be estimated
from his/her score on T, T, by the formula

t. = a r. (1)3 3

if a linear relationship is assumed, and if T' is assumed to have a standard
normal distribution---that is, T' d N(O, 1).

If the item in question yields responses on a continuous scale, the ob-
served score on the item is given by the usual true score model as

x. t. + L, (2)

where x. is the observed score on the item for Person j, t. is the person's
true scgre on the trait defined by the item score, and ; i a random error
term which is distributed c d N(Oo 2 ),Or > 0, for Person j.

mir'1 z- ~ l i ' •a
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Based on Equations 1 and 2,

E(x.) = E(t.) + E(e) (3)

E(a -) + 0

=aT i,

since trait estimate T. is constant for Person j. Since E(x.) is the classi-

cal definition of a trde score, the true score on the item i4 defined as
t. = aT.

The variance of the observed score on Person j on the item is given by

V(x) = V(t + )

- V(t) + V(c) + 2cov(tj, C).

Since t. is constant for Person j, and since the covariance with error is
assumed3to be zero,

V(x.) = + V(E) =..2 (4)

Up to this point the expectation and variance of the observed score,
X , has been obtained based on the probability distribution of scores for
a single person. Similar results can also be determined for the entire popu-
lation of individuals. Notationally this will be indicated by starring the
subscript indicating the person. The expectation of the score on the item
is then given by

E(X.) - E(TI) + E(e)

- E(aT,) + 0

= a E(T*)

-- a • 0 = 0. (5)

The variance of scores on the test item is given by

V(X.) = V(T') + V(t) + 2cov(Tj, c)

= V(aT.) +7 2 + 0

= a2 • V(T.) +j2

= a2 +0 2  (6)

since T. has a variance of 1.0 and the covariance of the trait score and
error is assumed to be zero. If the item trait scores are assumed to be

U?
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in standard score form, V(X.) = a2 + a2 = 1.0. Therefore,

a 2= 1 - a2 .

Equation 4 can then be written as

V(x.) = 1 - a2. (7)

Since the real interest of this report is the effects of guessing on
the factor structure of dichotomously scored tests, the continuous item
score will now be dichotomized by specifying a value c related to the diffi-
culty of the item. If x. is greater than c, a score of 1.0 will be assigned
to Person j, and if xj i less than c, a score of 0.0 will be assigned. More
concisely,

if x > c, u. =1

and if x. < c, u. =03- 3

where u. is the dichotomous score for the item for Person j.3

The probability that a person with ability T. will get a score of
u. =1 on the item is

P(U. = oj) = f *(z)dz, (8)
z c

c - E(x.) c - aT

where zc and ¢(z) is the normal probability

V V(x 9 )a

density function. The probability of a score of u. = 0 for a person withability T j is Zc +() zP(Uj = OJT.) = z .

This is essentially the normal ogive IRT model.

If Person j obtains a score of 0 on the item, (i.e., he/she does not
know the correct answer), he/she may guess the correct answer with probability
I/A, where A is the number of alternatives in the item if it is assumed to be
multiple-choice. That is, with a 1/A probability, the 0 will be changed to
a 1. Therefore, the probability of obtaining a score of ion the item when
guessing is a factor is given by

PIN = 1[Tj) - P(Uj = 1t j) + P(Uj = OJTj) 1/A. (9)
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One way to conceptualize the effect of guessing on this item is that
guessing causes the cutting score, c, to be shifted downward, increasing
the probability of a correct response. To determine the magnitude of this
shift, the cutting socre, c', that yields the correct probability of a correct
response, including the guessing effect, can be determined using the inverse
normal transformation:

1.

z = 4 (1 - P'(Uj = ljr.)). (10)

The value of c' is obtained by transforming this z-score to the observed score
scale using

c'j = z' 1 - a2 + aT.. (11)

Note that c' has an index, j, denoting that its value may be different for
each person, depending on the ability level T. The guessing effect for
Person j can then be defined as

gj = c - cj. (12)

Another way of conceptualizing the effect of guessing is that it shifts up-
ward the examinee's propensity distribution by an amount g .

Based on the idea of guessing causing a shift in a person's propensity
distribution, a new continuous score for an item can be defined to include
guessing as a factor in the item response:

= X. + gj = t. + E + gj, (13)

where g. is constant for Person j on any given item, but varies across people

and items. The expected value of this score for Person j is

E(yj) = E(t.) + E(c) + E(g.)

= E(at ) + 0 +

aTj + gj. (14)

In classical test theory, this expected value is defined as the true score
on the item for Person j (Lord & Novick, 1968). Notice that there is a guess-
ing component in this classical true score. The variance of y for Person j
is given by

V(yj) = V(t.) + V() + V(gj) + 2cov(t., 9j) + 2cov( , gj) + 2cov(t., E)

=0+1- a2 +0+0+0+0

= I - a2 (15)
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since t. and g. are constant and the covariance with error is assumed to be

zero.

The probability of a correct response to an item when ability is measured
on the y-scale (i.e., when guessing is a factor in the item response) is given
by

PI(U = l fj) = f O(z)dz, (16)
3 Z'I.

where

c - aT. + g.

As was done previously, these results can be generalized to apply to
the scores obtained from a group of individuals rather than for a single
individual, as given in Equations 8 through 16. The expected value of the
continuous item score for the population of individuals when guessing is a
factor in responses is

E(Y.) = E(TI) + E(e) + E(G.)

= E(aT.) + 0 + E(G.)

= a E(T.) + E(G.)

= 0 + E(G.) = E(G,)j (17)

where G. is the random variable associated with the guessing effect. Thus,
the average score on the item for the population is increased over the no-
guessing score by an amount equal to E(G.). The variance of the Y-score for
the population is given by

V(Y.) = V(T;) + V(c) + V(G.) + 2cov(TI, G.) + 2cov(E, G.)

= V(aT.) + I = a2 + V(G.) + 2cov(aT., G.) + 0 + 0

= a2V(T.) + I - a2 + V(G.) + 2acov(T., G.)

= 1 + V(G.) + 2acov(T., G.). (18)

From Equations 17 and 18, the proportion in the population that will obtain
a score of U. = 1 can be determined. This proportion is given by
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P'(U. = 1) = *(z)dz, (19)
ZI

C

where

zc i - E(G.)

c 1 + V(G.) + 2acov(T*, G.)

The development of this model has now reached the point where it can
be applied to the major area of interest of this paper---determining the ef-
fect of guessing on the proportion of variance accounted for by the common
factors in a test. First, for the unifactor case, the proportion of variance
accounted for on the item in question by the unidimensional ability, t, when
no guessir is present can be obtained from Equation 6 and the expression for
the variance of the true scores, t, over the population of interest:

V(TI) = V(aT.) = a2 V(T.) = a2 .  (20)

The proportion of observed variance for the item accounted for by the true
scores is then

V(T*) a2 a2 (21)

V(X-) = a2+ a 2  a2 + 1 - a2 a2

Thus, the proportion of variance accounted for by the item trait is simply
the squared correlation between the trait and the true score on the item.

The proportion of variance accounted for by the item true scores when
guessing is a factor in item responses is given by the ratio

V(E(yji))/V(Y.).

The numerator of this ratio, the variance of the true scores, can be obtained
from Equation 14 as

V(E(yj)) = V(aTj.+ Gj)

= V(aTj) + V(G) + 2cov(aTj, Gj)

= a2 V(T.) + V(Gj) + 2acov(Tj, G.)

= a2 + V(G.) + 2acov(Tj, Gj). (22)

Using the value for variance of the observed score given by Equation 18, the
ratio of the true score variance to the observed score variance is given by

q4
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V(E(y)) a2 + V(G.) + 2acov(T., G.) (23)

V(Y.) 1 + V(G.) + 2acov(T, G.)

In the univariate case, Equations 21 and 23 simply give the reliability of a
single test item.

The results for the univariate case can be generalized to the multi-
variate case by redefining t. asr3

m
t. a k Tjkl (24)tJ k=l Tk

where Tjk d N(O, 1) for each j and k, the ak are the correlations between the

T and the continuous score on the test items, and m is the number of abilities

required to perform on the items. The Tjk and 'jl are assumed to be uncor-
related for k 0 1. The proportion of common variance in the no guessing case
then becomes

m m
Z a? V(T~k) + a ajcov(Ti, T.j)

V(T') V(ZakT*k) k=l i j *j

v(x.) 1 1

m
Z a

k=h (25)

where h2 is the communality. When guessing is a factor, Equation 23 becomes

n n
V(E(Y.)) Z a2 + V(G.) + 2 z akcov(T*k$ G.)

_____ =l k1 k=1 (26)
n

V(Y.) 1 + V(G.) + 2 Z akcov(T*k, G.)
k= 1
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Predictions from the Theoretical Model

With the development of the theoretical model presented on the previous
pages, it is possible to determine the magnitude of guessing effects for per-
sons of a given ability, and for populations with known distributions of ability,
assuming the "knowledge or random guessing model" is correct. For example, if
an individual with known ability T. = -1 is administered an item with diffi-
culty .5 for the population as a w~ole, a guessing level of .05, and a cor-
relation between the item and trait T of .9, several important features can
be determined. First, the expected score on the trait defined by item per-
formance can be obtained from Equation 1 as -.9. The variance of the estimate
on the item trait for the person is given by Equation 7 as .19.

Based on a cut score of 0.0 for the population for the no-guessing case,
the probability that Person j obtains a correct response to the item can be
obtained from Equation 8 as .019. After introducing the effect of guessing
into this item, this person's probability of a correct response is .069
(from Equation 9). This change in probability requires a shift in the person's
propensity distribution of 1.49 standard deviation units, yielding a guessing
effect from Equations 11 and 12 of .252.

This same procedure can be followed for all levels of ability in the
population. If the probability distribution of ability in the population is
known, an expected guessing level for the population as a whole can be deter-
mined using

E(G) = S g f(g)dg. (27)
0

Unfortunately, g has a functional form that contains the inverse normal
function, so direct computation of the expected value is impossible. There-
fore, for the purposes of this report, E(G) has been computed using the cautious
adaptive Romberg extrapola'ion method (IMSL, 1979) of numerical integration.

Table I gives the magnitude of the expected value of the guessing effect
for combinations of the probability of guessing on the item and the correlation
between the item trait, t, and the person trait, T. The probability of guess-
ing is defined here as the probability of a correct response for a person with
no knowledge of the material measured by the item. The correlation between
the item and person traits is the same as the loading of the item on the first
factor of a test measuring the person trait. A cutting score of 0.0 was used
for all combinations of guessing level and factor loading because any other
cutting score would yield a simple linear transformation of these results.
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Most of the results presented in Table 1 match what would commonly be
expected of a guessing effect. As the probability of guessing increased, the
guessing effect increased. However, for low guessing probabilities the guess-
ing effect increased with increased factor loading, while for high guessing
probabilities, the guessing effect decreased with increased factor loading.
At a guessing probability of approximately .25, the guessing effect was fairly
constant. This interaction of guessing probability and factor loading was
unanticipated.

Table 1

Expected Value of the Guessing Effect
for c. = 0, and Various Combinations
of Guessing Level and Correlation

Between Item Trait and Person Trait

Guessing Correlation Between Person Trait and Item Trait
Level .6 .7 .8 .9

.05 .07 .08 .10 .14

.15 .19 .19 .21 .24

.25 .30 .30 .30 .31

.35 .41 .40 .39 .38

.45 .53 .51 .48 .45

.55 .66 .62 .58 .51

.65 .80 .75 .68 .59

.75 .98 .91 .81 .68

Note. Expected values were based on a N(O, 1) ability distribution.

The reason for this interaction can be determined from Figures 2a, 2b,
2c, and 2d, which show the probability of a correct response to the item
with and without guessing, the guessing effect at various ability levels,
and the ability density function for guessing probabilities and first factor
loading of (.05, .6), (.05, .9), (.45, .6) and (.45, .9), respectively. From
these figures it can be seen that the magnitude of guessing increases more
quickly with decrease in ability for the .9 loading case than the .6 loading
case. This yields a higher expectation for the .9 loading case with a .05
guessing level than for the .6 loading case, because the guessing effect
reaches an appreciable size within the range containing most of the ability
distribution in the former case, but not in the latter. When the guessing
probability is .45, the higher guessing level over the entire ability range
for the .6 loading item overcomes the steeper slope of the guessing effect
for the .9 loading item. In other words, the guessing effect is greater for
the poorer item over a wider range of ability.
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From a practical point of view, these results suggest that guessing at
reasonable levels is a more serious problem for high quality items than low
quality items. In the latter case, the error variance in the item masks the
guessing effects. Of course, this conclusion assumes the correctness of the
"knowledge or random guessing model".

Although the magnitude of the guessing effect has resulted in some in-
teresting findings, the more important area of interest in this report is
the reliability, or proportion of common variance as a function of guessing
level. This value can be determined from Equation 23, but first the variance
of the guessing effect, and the covariance of the guessing effect and ability
are required. The formulae used to obtain these statistics using numerical
integration are given by:

V(G) = j (g - E(g)) 2 f(g)dg,
0

and

cov(i, G) =J t(g - E(g)) f(T)dT.

The expression in the equation for the covariance is integrated over T, since
g is a function of T. It should be recalled that T d N(O, I).

Table 2 gives the variance and covariance values for the same probability
of guessing values and the level of factor loadings used in Table 1. From
this table it can be seen that as the guessing level increases, the variance
increases, and the covariance of guessing and ability becomes more negative.
Also, the same trend can be seen as the factor loading increases.

The negative covariances were expected in these results, since low
ability individuals guess more often the high ability individuals. The
increase in variance was also expected. As the guessing level increases,
the guessing effect function shown in Figures 2a through 2d is shifted up-
ward, demonstrating a greater range of guessing effect. With increased
factor loading, the guessing effect function increases more sharply, re-sulting in the greater magnitude of the variance. It is not surprising
that as the variance increases the covariance also increases in absolute
value.

From the variance of the guessing effect, the covariance of guessing
and ability, as well as the factor loading, the proportion of variance in
item responses accounted for by ability can be determined from Equation 23.These proportions are presented for the cases used in Tables 1 and 2 in
Table 3. In addition to the 0.0 cutting score case (corresponding to .5
traditional difficulty for the group), the proportions are presented for
the .75 and .25 traditional difficulty cases.
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Table 2
Variance of the Guessing Effect and

the Covariance of the Guessing Effect and the
Trait Level for C. 0 and

Various Combinations of Guessing Level
and Factor Loadings

Guesi ,~First Factor Loading
Level

.6 .7 .8 .9

.05 VAR .00 .01 .03 .08
COy -.05 -.07 -.12 -.20

.15 VAR .02 .03 .06 .12
COV -.11 -.15 -.20 -.28

*.25 VAR .03 .05 .09 .15
COV -.15 -.20 -.25 -.33

.35 VAR .04 .07 .11 .18
COV -.19 -.24 -.30 -.37

.45 VAR .06 .09 .13 .21
COV -.23 -.28 -.33 -.40

.55 VAR .07 .11 .16 .23
COV -.26 -.31 -.36 -.43

.65 VAR .09 .13 .18 .25
COV -.29 -.34 -.40 -.46

.75 VAR .11 .15 .21 .28
COy -.32 -.37 -.43 -.49

4-
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Table 3

Proportion of Variance Accounted for in Item Responses

by Guessing Level, Factor Loading,

and Cutting Score

Cutting Factor Guessing Level

Score Loading .00 .05 .15 .25 .35 .45 .55 .65 .75

.9 .81 .73 .69 .66 .64 .61 .59 .56 .53
0 .8 .64 .57 .51 .47 .44 .40 .37 .34 .31

.7 .49 .44 .38 .34 .31 .27 .24 .22 .19

.6 .36 .32 .28 .24 .21 .18 .16 .14 .12

.9 .81 .80 .78 .77 .76 .74 .73 .72 .70
-.6745 .8 .64 .62 .59 .57 .55 .53 .50 .48 .45

.7 .49 .47 .45 .42 .40 .38 .35 .33 .30

.6 .36 .35 .32 .30 .28 .26 .24 .22 .20

.9 .81 .60 .52 .47 .43 .39 .36 .33 .29
.6745 .8 .64 .45 .36 .30 .26 .22 .19 .17 .14

.7 .49 .35 .26 .21 .17 .14 .12 .10 .08

.6 .36 .26 .18 .14 .11 .09 .07 .06 .05

Note. Ability is assumed to be distributed N(O, 1).

'I

4J
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Note first that as the guessing level increases, the proportion of
item variance accounted for by ability decreases, and that it decreases more
dramatically for the more difficult items. For the most difficult item
(cutting score of .6745), even the .05 guessing level has a substantial ef-
fect. As the size of the factor loading declined, the proportion of variance
in the item scores accounted for by ability also declined, as expected.

It must be kept in mind when interpreting these results that they refer

to the proportion of variance accounted for by ability (reliability) for only
one item. The values for a test made up of many items would be substantially
higher, the actual value depending on the distribution of difficulties of
the items, their individual guessing levels, and the interitem covariances.
Because of the complexity of the problem of determining the reliability of a
test using the theoretical model proposed, only the reliability for a single
item is presented.

Evaluation of Empirical , Sorting Procedures

Since a theoretical analysis of tt c f{fects of guessing on the proportion
of common variance in a test compos-A of many items was not possible, the more
realistic, and therefore more complex, cases were studied by applying the
available item sorting procedures to various simulated data-sets and real
data-sets. The basic design for this component of the research study was to
produce item sets with known structure using simulated and real test results,
and then attempt to recover the structure using each of several available tech-
niques. The techniques considered included: factor analysis, cluster analysis,
nonmetric multidimensional scaling, and latent trait theory.

Besides the choice of techniques to be used on the item response data,
another decision needed to be made concerning the coefficient used as a measure
of similarity between the items. Factor analysis is rather limited in this
choice, being tied to correlation type statistics. Cluster analysis and non-
metric multidimensional scaling do not have this limitation, opening up the
possibility of using many other measures of similarity. Therefore, the fol-
lowing coefficients were applied to the data, and the various techniques were
applied to each: phi coefficient, tetrachoric correlation, corrected tetra-
chorics, eta coefficient, Yule's Q, Yule's Y, approval score, Kendall's tau B,
Goodman/Kruskal's gamma, agreement score, and the Lijphart index. The formula
and reference for each of these coefficients is given in Appendix A.

Item Sorting Procedures

Each of the techniques used in the analysis of the item response data
nas many variations in basic procedure as well as several options as to spe-
cific method of application. Therefore, before describing the research design
any further, the specific techniques used will be described to make their ident-
ity unambiguous.
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Factor Analysis Two basic factor analysis procedures were used on the
data: the method of principal components, and the method of principal factors.
These two procedures differ mainly in that the former assumes that all of the
variance influences the magnitude of the correlations, while the latter assumes
that some variance is unique to each item and a reduced number of factors
(less than the number of items) explains the correlations. Although the latter
procedure seems more reasonable, both were used on selected data-sets to deter-
mine their relative value.

In addition to the basic factor analysis procedures, two types of ro-
tations were used to help in the interpretation of the results. The two ro-
tations used were VARIMAX, and OBLIMIN. These two were selected because of
their general availability, and because they allowed comparisons between
orthogonal and oblique solutions.

The factor analyses were run on only three of the similarity coefficients
mentioned above: the phi coefficient, the tetrachoric correlation, and the
tetrachoric correlation corrected for guessing (Carroll, 1945). The other
coefficients were not used because they did not even approximate the assump-
tions of the factor analytic model.

Because of the different factor analytic options available in different
packages, four different packages were used to perform the analyses. These
included SPSS (Nie, Hull, Jenkins, Steinbrenner and Brent, 1975), SOUPAC
(Com uting Services Office, 1974), OSIRIS 1 (Institute for Social Research,
1974) and SAS (Barr, Goodnight, Sall, and Helwig, 1976). In some cases, the
same analyses were run using two different packages to check their compara-

bility. Differences in results obtained from the different package programs
were minor.

Cluster Analysis Two different cluster analysis approaches were taken
for this study. The first, labeled CLUSTER for this report, builds clusters
of items one at a time. The procedure first searches the input similarity
matrix for the two items with the highest similarity. The matrix is then
searched for the item that has the highest minimum similarity to the three
items in the cluster. This item is also added to the cluster. This procedure
continues until no items can be found with a similarity greater than a pre-set
cut-off value. At that point the matrix is again searched for the two items
not included in the first cluster with the highest similarity. These two
items form the beginning of a new cluster. The clustering procedure then
continues until all items are used or until none of the similarities exceed
the cut-off value.

The second clustering procedure used, called HICLUSTER in this report,
is a hierarchical clustering procedure. In this procedure, the most similar
pair of items is connected first, then the next most similar, and so on, to
form initial clusters.. These initial clusters are combined when all of the
points in one cluster are connected to all of the points in another cluster.
Clustering in this procedure continues until all of the items are included
in one cluster. All of the similarity coefficients listed above were used
wilth both of these procedures.

C
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Both of the clustering procedures used for this study were applied using
programs from the OSIRIS M computer program package. Although this pack-
age is not as widely available as SAS or SPSS, the clustering routines from
this package were used because of their greater versatility.

Nonmetric Multidimensional Scaling The nonmetric multidimensional
scaling procedure used for the data analysis in this study was the basic
MDSCAL procedure developed by Shepard (1962) and Kruskal (1964). This pro-
cedure rank orders the similarity of the items used in terms of the specified
similarity coefficient used, and then attempts to define a space of minimum
dimensionality such that the distances between the items in the space are
ranked in the same order as the initial similarities. The procedure uses a
steepest descent iterative approach to improve the relationship between the
spatial configuration and the initial similarities. When the rate of improve-
ment levels off, the solution is accepted. A Euclidean metric was used for
all of the analyses using this procedure.

The OSIRIS In version of MDSCAL was used for all of the analyses pre-
sented in this report. Each of the coefficients mentioned above was used
as a similarity measure for this procedure, since it makes no assumption other
than an ordinal scale concerning the coefficients. Although numerous other
multidimensional scaling algorithms exist, this algorithm was selected because
it is widely available.

Latent Trait Analysis Although latent trait analysis is not commonly
thought of as a multidimensional clustering technique, some results obtained
in previous research suggested that it might be used as such (Reckase, 1979).
That research suggested that when several factors are present the LOGIST
(Wood, Wingersky, & Lord, 1976) item calibration program selects one factor
as abasis for item calibration. Thus, items with high discrimination para-
meter estimates should be from the same latent dimension, while those with
low estimates should be from other dimensions. By deleting the highly dis-
criminating items after each run of the program, another set of highly dis-
criminating items may be found that measure a different latent dimension.
Thus, iterative use of the program, with item deletions between successive
iterations, may yield sets of homogeneous items. It was the purpose of the
analyses performed for this research to determine if that were indeed the case.

Data-Sets

As mentioned earlier, the item sorting procedures were applied to two
kinds of data-sets: simulated and actual test data. The simulate4 respotises
of examinees to items were used so that precise control could ie maintained
over the dimensionality of the data. The actual test data were used to get
a more realistic evaluation of the procedures. The production procedures and
characteristics of the data-sets will now be described.

C 4 -,
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Simulated data A total of 24 simulated data-sets were produced for
this study. These data-sets all represented the responses to 50 items by
1000 individuals. They varied in the rumber of dimensions used to generate
the responses, the distribution of item difficulties, the guessing level,
and the distribution of the guessing level. All of the data-sets were gen-
erated using a variation of the procedure described by Wherry, Naylor, Wherry
& Fallis (1965).

This procedure generates data using the basic linear factor analytic
model. A more detailed description of the procedure is given in Reckase (1979).

The procedure developed by Wherry et. al. generates data to match a
specified factor structure, but does not include a guessing effect. There-
fore, after the simulated responses were produced using the above procedure,
the incorrect responses to an item were randomly changed to correct responses
at a rate equal to the guessing probability for the item. This was done by
comparing a flat random number on the 0.0 to 1.0 range with the guessing level
for the item, and changing an incorrect response to a correct response if the
selected random number were less than the guessing level.

The total list of data-sets produced for the study are presented in
Table 4. As can be seen from the table, more than half of the data-sets pro-
duced used only one generating factor. These data-sets were produced to de-
termine the effect of guessing on the obtained dimensionality of a set of test
data. Both the level of guessing and the distribution of parameters were var-
ied for these data-sets.

The next set of data-sets listed in the table used two orthogonal factors
to generate the item responses. This set of relatively simple multidimensional
data-sets was used to determine which procedure could adequately find the homo-
geneous item sets within the test. If a procedure were not successful on this
"easy" set of data, it was eliminated from consideration.

The remaining simulated data-sets used three or nine orthogonal factors
to generate the item responses. These data-sets were generated to have a
large first factor to more accurately simulate what was believed to be a
realistic state of nature. Only item sorting procedures that succeeded on the
two-dimensional data were applied to these more complex data-sets.

Real Data The real data-set used in this study was produced by sampling
items and responses from the results of the 1975-76 administration of the Iowa
Tests of Educational Development (1972). The desire here was to produce a test
with two underlying dimensions that contained all the sources of variation
present in typical test administrations. To achieve the desired dimensionality,
items were selected from the Expression and Quantitative Thinking subtests of
the ITED. These two subtests were judged to be most dissimilar, and so most
likely to yield the desired structure. A total of 50 items were randomly
selected from the 105 items in the two subtests using a stratified random
sampling approach. Thirty-three of the items in this data-set were from the
Expression subtest and 17 were from the Quantitative Thinking subtest.
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Table 4

Catalogue of Data-Sets

Dimensionality of Data Set Labels*

1-Factor SD150N.CGOO, SD150R.CGOO, SD15OR.CGO5

SD150R.CG15, SD150R.NG15, SD150N.CG15

SD150R.CG25, SD150R.NG25, SD150N.CG25

SD150N.CG35, SDI50R.CG35, SD150N.CG45

SD150R.CG45, SD150N.CG55, SD150R.CG55

SD150N.CG65, SDI50R.CG65, SD150N.CG75

SD150R.CG75

2-Factor S[250R.CGOO, SD250N.NG20, SD250R.CG25

3-Factor S[350N.NG20

9-Factor Sf950N.NG20

The label of the data-set describes the data-set. The first two letters
stand for simulation data. The next three or four digits tell the number
of factors and number of items. All data-sets contained 50 items. The
letter following the 50 tells the distribution of traditional item diffi-
culties: N or R meaning normal or rectangular, respectively. Following
the period is CG or NG, standing for constant or normally distributed

$ guessing. The final two digits give the guessing level. The values given
are the guessing level for CG data-sets or the mean guessing level for NG
data-sets.



-23-

Research Design

The basic research design of this study contains four components. First,
the four techniques of interest (factor analysis, cluster analysis, nonmetric
multidimensional scaling, and latent trait analysis) were applied to the one
dimensional data-sets, with guessing varied, to attempt to discover the effect
of guessing on the techniques. This was done by plotting various characteristics
of the techniques (e.g., size of first eigenvalue) against the guessing level
to determine if any relationship existed. Also, the structure of the data-sets
was considered unknown and the results of the procedures were analyzed to deter-
mine if the unidimensional structure could be discovered. This set of analyses
formed a basis for comparison for all of the subsequent analyses.

The second analysis component consisted of applying the four techniques to
the two, three, and nine-dimensional data-sets. For each of the data-sets, an
attempt was made to recover the underlying structure of the data. If a procedure
failed for a low dimensional data-set, it was not used with the more complex
data-sets.

The third analysis component consisted of applying the four techniques to
the real data-set. The procedure used with the real data-set was similar to
that used with the simulated data-sets. The techniques were evaluated on their
ability to reproduce what was thought to be tne underlying structure of the
data-set. In this case the data-set was constructed to have two components,
but since the true structure could not be determined with certainty the inter-
pretation of the results was much more cautious.

The final analysis performed for this study was the comparison of the
results obtained using the simulation data with those suggested by the research
literature. That is, the obtained reliability as a function of guessing was
compared to the theoretical predictions.

Results

One-Dimensional Simulated Data

The results of the application of the four techniques to the one-dimensional
simulated data will be presented first. The factor analysis results will be pre-
sented first, followed by the multidimensional scaling, cluster analysis, and
latent trait analysis results.

Factor Analysis The first analysis performed using the factor analysis
procedure was determination of the relationship between the size of the first
factor on the test and the magnitude of the guessing component contained in
the responses to each item on the test. To obtain this information, a principal
components factor analysis was performed on tetrachoric correlations for eight
data-sets. These data-sets were all generated using a normal distribution of
traditional item difficulty centered around .5. Each was generated using a



-24-

constant guessing level. The guessing level used were 0, .15, .25, .35, .45,.55, .65, and .75. All data-sets were generated so that each item had a .9

loading on the first factor before the guessing effect was added.

To show the relationship between the guessing level and the size of the

factor was plotted against the size of the guessing component. This plot is
given in Figure 3, along with a plot of the KR-20 reliability against the guessing
level. As can be seen from the plot, the proportion of variance accounted for

by the first factor dropped off substantially with an increase in guessing. At
the .15 guessing level, the proportion of variance had already declined to .62
from the .83 obtained for the no guessing case. It is interesting to note that

the decline in the KR-20 reliability is not nearly as dramatic, showing its
insensitivity to gue;sing effects.

Along with the analysis of the proportion of variance accounted for by the

first factor, an attempt was also made to determine if guessing induced additional
factors in the test. That is, did the decline in the first factor indicate thepresence of other factors. To determine this, the number of factors in each

factor analysis was determined using the skree technique. The factor loadings
for those factors were than studied to determine whether they were interpretable.
For all cases except the .00 and .75 guessing level data-sets, two factors seemed

to be present in the data. The second factor for all of the two factor cases
looked like a guessing factor, with high loadings for the difficult items. Forhigher guessing levels, the second factor was not as clear, disappearing altogether

for the .75 guessing level data-set.

In addition to the creation of a second factor in these data-sets, the
loadings of the items on the first factor were also affected. They were found

to decline with an increase in the difficulty of the test items. Since this
did not occur for the .00 guessing data-set, the effect can be attributed to
guessing.

Since the guessing factors were defined by loadings on the hard items, it
would seem reasonable that the distribution of item difficulties would interact
with the guessing effect. To test this conjecture, a data-set was produced with

a rectangular distribution of difficulty rather than a normal one, as in the
previous data-sets, and a .25 guessing level. The results of the principalcomponent analysis of this new data-set showed that the presence of items of more

extreme difficulty had the effect of reducing the proportion of variance accounted
for by the first factor from .50 to .41 and increasing the number of factors inthe data-set. The shree technique indicated four factors, but only three were

readily interpreted. The second and third factors for this data-set both seemed
to be guessing factors. For comparison purposes, the factor loadings for thefirst two principal components from the normally distributed data-set, and the

first three from the rectangularly distributed data-set are presented in Table 5.
Notice the guessing factors in the data and the decline in the first factorloadings with the increased difficulty of the items. Several other data-sets

were produced with rectangularly distributed difficulties and their analysis
produced similar results.

0 -
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Table 5
Principal Component Factors from Tetrachoric Correlations

for Simulated Tests with Normal and Rectangular Distributions
of Difficulty and .25 Guessing Level

Factors (Normal Distribution) Factors (Rect. Distribution)
Item Difficulty I II Difficulty I II III

1 15 39 34 01 06 13 31
2 18 44 37 03 09 23 07

3 19 55 33 05 17 15 36
4 21 50 48 07 12 29 42

5 22 59 22 09 20 36 31

6 27 60 27 11 25 25 19

7 29 64 21 13 30 27 38
8 29 58 37 15 29 43 05

9 29 64 24 17 41 23 37

10 31 66 26 19 39 31 32

11 33 68 21 21 53 25 14
12 34 68 20 23 49 33 18

13 34 71 18 25 47 36 -14
14 37 65 18 27 54 32 14

15 38 68 17 29 55 40 -03

16 39 74 13 31 63 31 -01
17 41 68 16 33 55 36 -04

18 42 73 -01 35 66 24 -15

19 42 67 13 37 62 32 -05
20 47 75 12 39 66 28 -07

21 48 73 07 41 63 34 -26

22 48 73 01 43 68 26 01
23 52 72 03 45 66 28 -11

24 52 72 -06 47 74 19 -07

25 52 72 -01 49 71 20 -19

lote. All values are presented without decimal points.
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Table 5 (Continued)
Principal Component Factors from Tetrachoric Correlations

for Simulated Tests with Normal and Rectangular Distributions
of Difficulty and .25 Guessing Level

Factors (Nom al Distribution) Factors (Rect. Distribution)
Item Difficulty I 11 Difficulty I II III

26 54 77 02 51 72 18 -14

27 54 74 02 53 70 08 06

28 54 73 -03 55 76 10 -11

29 55 73 08 57 73 14 -13

30 55 75 -07 59 75 09 -14

31 56 78 -04 61 78 -10 17

32 57 78 -10 63 72 06 -21

33 58 75 -08 65 77 -09 -07

34 58 74 06 67 79 -08 -09

3b 58 77 -07 69 75 -09 -15

36 60 76 -04 71 81 -18 -01

37 60 76 -18 73 77 -08 -07

38 60 74 -14 75 78 -14 -10

39 61 74 -10 77 78 -20 -13

40 61 79 -18 79 78 -25 -05

41 62 77 -15 81 77 -23 -01

42 64 77 -18 83 77 -23 -05

43 64 78 -21 85 79 -32 -01

44 65 80 -24 87 79 -35 13

45 65 75 -26 89 77 -39 01

46 66 74 -27 91 77 -36 -04

47 69 78 -32 93 76 -37 19

48 70 77 -35 95 79 -49 17

49 7) 75 -35 97 75 -43 02

50 79 71 -42 99 63 -60 55

Note. All values are presented without decimal points.

( j
14
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From this set of analyses, three types of results were observed concerning
the effects of guessing on the unidimensional simulation data. First, guessing
reduced the contribution of the first principal component to the factor analysis
results. Second, the loadings of the items on the first factor were reduced to
the extent that guessing affected the items. Third, extra factors which seemedto be guessing factors were present in the principal component solution. Similar
results were obtained when the principal factor procedure was used instead of
the principal component solution.

Since the purpose of this report is to find methods for recovering unidimen-
tional sets of items from a test, one further analysis was run on the one-factor
rectangular distribution of difficulty data-set with .25 guessing. The purpose
of this analysis was to determine if the correlation matrix could be corrected
for guessing. Carroll's (1945) correction for the four-fold tables used to
compute tetrachoric correlations was selected for this purpose. Since the true
guessing level for an item is not usually known, the data were corrected for
guessing using .15, .25, and .35 guessing levels. The corrected tetrachoric
correlation matrices were then factor analyzed using the principal component
technique. The first two factors obtained for the corrected matrices and the
uncorrected solution are shown in Table 6.

The most obvious result that can be seen in Table 6 is that overcorrecting
for guessing (.35 correction) results in a very unusual factor analysis solution.
The first seven items defined unique factors, and many of the factor loadings
were essentially 1.0. Overcorrecting for guessing clearly does serious harm
to the factor analysis, resulting in meaningless results.

Correcting for guessing at the .15 and .25 level gave more reasonable
results. The first factor loadings were increased above the uncorrected values.
In many cases the .25 correction yielded loadings close to the .9 values used
to generate the data. The .15 correction did little to remove the second factor
from the solution. The .25 correction did tend to restrict the influence of the
second factor to fewer items, mainly the most difficult items in the data-set.

In general, these results indicate that the correction for guessing for the
tetrachoric correlations has some merit, but care must be taken not to over-
correct. The first factor loadings are improved by the procedure, but the cor-
rection did not totally remove the second factor, which was attributed to guessing.

Nonmetric multidimensional scaling The first analysis performed using the
nonmetric multidimensional scaling technique was the application of the MDSCALprogram to the one factor data with a rectangular distribution of item difficultyand no guessing. This analysis was performed on the data using each of thirteen

similarity coefficients. These included the following: agreement coefficient,
koppa coefficient, kappa coefficient, Lijphart index, Kendall's tau B, approval
score, phi coefficient, Yule's Q, Yule's Y, phi over phi max, gamma, tetrachoric
correlation, and eta coefficient. Each of these coefficients is described in
Appendix A. This large set of coefficients was used since MDSCAL does not require
any special characteristics in a measure of similarity, and it was hoped that
one of these coefficients would be less sensitive to guessing effects than the
others.
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Table 6
Factor Pattern Matrices for a Two-Factor

Principal Component Solution of One-Factor Data with .25 Guessing
with Various Levels of Correction for Guessing

No Correction .15 Correction .25 Correction .35 Correction

Item I II I II I It I II

1 06 13 14 24 64 75 00 00

2 09 23 17 42 78 92 00 00

3 17 15 36 18 99 48 00 00

4 12 29 24 51 66 63 00 00

5 20 36 32 59 71 69 00 00

£ 2b 25 38 36 75 30 00 00

7 30 27 49 34 91 14 00 00

8 29 43 41 56 64 51 97 -61

9 41 23 60 22 90 09 101 07

10 39 31 53 37 72 33 100 -03

11 53 25 75 15 100 -06 101 07

12 49 33 67 30 95 -06 101 07

13 47 36 60 34 79 -01 99 -48

14 54 32 71 28 95 12 101 07

15 55 40 70 40 94 10 101 07

16 63 31 79 26 100 00 101 07

17 55 36 66 35 80 17 99 -29

18 b6 24 81 10 98 -14 101 08

19 b2 32 74 26 87 19 100 03

20 66 28 78 23 94 13 101 07

21 63 34 73 28 82 13 98 -39

22 68 26 78 24 93 20 101 04

23 66 ?8 75 5 86 19 98 -04

24 74 19 86 09 97 03 101 -01

25 71 20 80 13 93 08 99 -23

Note. All values are presented without decimal points.
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Table 6 (Continued)
Factor Pattern Matrices for a Two-Factor

Principal Component Solution of One-Factor Data with .25 Guessing
with Various Levels of Correction for Guessing

No Correction .15 Correction .25 Correction .35 Correction

Item I II I II I II I II

26 72 18 82 06 90 -01 99 07

27 70 08 79 01 89 06 97 11

28 76 10 85 03 96 00 101 09

29 73 14 80 09 91 12 98 -18

30 75 09 82 03 91 02 97 -18

31 78 -10 85 -12 92 -08 99 06

32 72 06 78 00 84 -14 95 -29

33 77 -09 83 -18 88 -21 98 07

34 79 -08 84 -14 91 -17 99 11

35 75 -09 80 -20 82 -43 96 09

36 81 -18 87 -25 90 -48 99 08

37 77 -08 82 -07 92 14 96 -14

38 78 -14 82 -17 87 -22 97 05

39 78 -20 82 -24 88 -17 96 -11

40 78 -25 82 -31 84 -54 97 08

41 77 -23 81 -25 86 -13 96 08

42 77 -23 81 -25 89 -23 96 04

43 79 -32 83 -34 87 -46 98 07

44 79 -35 84 -31 93 -14 98 05

45 77 -39 80 -35 86 -24 97 15

46 77 -36 80 -37 88 -29 98 -04

47 76 -37 82 -28 94 -03 97 04

48 79 -49 83 -46 95 -43 99 06

49 75 -43 84 -41 85 -71 98 06

50 63 -60 81 -37 72 -52 80 1.16

Note. All values are presented without decimal points.

'I
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After the !4DSCAL analysis was completed, the resulting two-dimensional
configurations were plotted and the stress of the solutions were noted. Stress
is a measure of the deviation of the obtained distances between the items in
the MDSCAL solution from the distances present in the initial data. The value
is standardized by the squared deviation of all of the distances from the mean
distance. The smaller the stress, the better the fit of the MDSCAL solution.

The results of the analysis of the coefficients applied to the one-factor
data indicated that three different types of solutions were being obtained for
the data. Six of the coefficients (agreement, koppa, kappa, Lijphart, tau B,
and phi) yielded plots that placed the items along a straight line on one
dimension, with the items ordered in difficulty--the easy items at one end and
the difficult items at the other. The values of the stress index varied from
.048 to .029, with the kappa coefficient giving the smallest value. The reason
for this pattern is that these coefficients are all affected by the difficulty
of the test items, with items close together in difficulty being judged more
similar. A plot of the MDSCAL result for the kappa coefficient is given in
Figure 4.

The second type of solution was obtained for six of the coefficients
(Yule's Q, Yule's Y, phi/phi max, gamma, tetrachoric, and eta). This solution
resulted in a circular cluster of points. The position of the items within
the cluster seemed to have no obvious relationship to the difficulty of the
items. The stress value for the solutions ranged from .34 to .33, with Yule's
Q and gamma giving the smallest values. This solution is a result of the fact
that these coefficients are not affected by the difficulty of the item, and
therefore all pairs of items are found to be equally similar for one-dimensional
data. The circular pattern is a result of trying to get all of the items equal
distances apart in a two-dimensional space. Of course this cannot be done, so
the stress of the solutions are higher than those for the first set of coefficients.
An example of the circular solution for the gamma coefficient is given in Figure
5.

The third type of solution obtained from the MDSCAL procedure resulted from
the application of the approval statistic. This solution had all of the easy
items clustered tightly in the center, with the hard items spread out to one
side. -The pattern is a result of the way this statistic is computed. It is
simply the proportion of times both items are answered correctly at the same
time. Thus, easy items are found to be more similar than hard items, which
have fewer correct responses. This solution had the lowest stress of all of
the procedures, with a value of .021. The plot of this solution is given in
Figure 6.

The next analysis run using the nonmetric multidimensional scaling technique
was the computation of the two-dimensional solution using each coefficient for
the one-factor, rectangular distribution of difficulty data-set with a .25
guessing level. The purpose of this analysis was to determine which coefficient
gave a solution that was least affected by guessing.
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FIGURE 5
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FIGURE 6
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The coefficients that yielded linear plots for the no guessing case gave
two different types of plots for the .25 guessing case. The agreement, koppa
and Lijphart coefficients resulted in wedge shaped plots for the two dimensional
MDSCAL solutions, with the items high in guessing being in the wide part of the
wedge. The stress was identical for all three coefficients, with a value of .104.
This was substantially higher than the .042 achieved for the no guessing case.
Figure 7 shows the plot of the results for the agreement score. Since these three
coefficients gave identical results, only the agreement score will be given further
consideration.

The second type of plot obtained from the coefficients giving a linear
plot for the no guessing data was a crescent shape with the easiest and hardest
items at the points of the crescent. The Kendall's tau B, phi and kappa co-
efficients gave this type of pattern. The stress for these solutions ranged
from .137 to .168, up from .029 to .048 when no guessing was present. Of these
three coefficients, kappa resulted in the MDSCAL solution with the smallest
stress value. The plot of the two-dimensional solution for the kappa coefficient
is given in Figure 8. The effect of guessing on these coefficients seems to be
an increased similarity in the very easy and very hard items, resulting in the
curvature in the plots.

The coefficients that resulted in circular patterns for the one-dimensional
data with no guessing also yielded two patterns when MDSCAL was applied to the
one-dimensional data with .25 guessing. The Yules Q, Yule's Y, phi/phi max,
gamma, and tetrachoric coefficients all resulted in two-dimensional solutions
that showed the original circular patterns distorted by pulling the items most
affected by guessing down to the lower left. Guessing increased the distance
between the items most affected by guessing, causing greater dispersion for
those items. The stress values for the solutions ranged from .219 to .270, with
the tetrachoric correlation giving the smallest value. Phi/phi max gave the
largest stress value and showed the greatest dispersion for the easy items. The
distortions caused by C:essing brought about a reduction in the stress value
from the .33 value obtained when no guessing was present. It seems that the
guessing effect brings about a more linear continuum than was present previously,
making the data easier to fit. The plot of the two-dimensional MDSCAL solution
for the tetrachoric correlations is presented in Figure 9.

The second type of solution obtained from the set of coefficients that
resulted in circular plots was obtained for the eta coefficient. In this case
the plot remained circular, but the hard items migrated to the circumfererce of
the two-dimensional structure, while the easy items moved to the center. rhe
stress for this solution increased from .330 for the no guessing solution to
.365 for the guessing solution. Figure 10 presents the plot of this solution.

The approval score, the coefficient that gave the third type of pattern
for the no guessing data, resulted in a pattern similar to that obtained for
the eta coefficient when guessing was present. A circular pattectn resulted,
with the hard items at the circumference and the easy items at the center.
The center cluster was much tighter in this case, however. The stress of this

M1
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FIGURE 8
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FIGURE 10
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solution was much higher than the solution for the no guessing data, with a
value of .239, compared to the .021 obtained earlier. A plot of the results
for the approval score is presented in Figure 11.

4One other coefficient was considered for use with the MDSCAL procedure.
That coefficient was the tetrachoric correlation corrected for guessing. To
check its usefulness, the tetrachoric correlations determined from the one-
dimensional, .25 guessing data were corrected for guessing using .15, .25 and
.35 guessing levels. The resulting coefficients were then analyzed using the

MDSCAL procedure. The results for the .15 correction gave a pattern similar
to the uncorrected data, but with slightly higher stress (.234 vs. .219). The
.25 correction resulted in a circular pattern similar to the no guessing data,
but with hard items at one side of the plot of the solution. The stress was
.320, almost as high as for the no guessing data (.334).

The .35 correction resulted in a solution with the seven hardest items
in one group and all of the rest in another. The stress for this solution
was a very low .074. This solution was similar to the no guessing solution
for the approval score.

From the analysis of the one-dimensional, .25 guessing data, four different
patterns of effects can be seen as a result of guessing. The coefficients that
gave linear patterns when no guessing was present were either broadened into
a wedge (agreement score) or bent into a crescent (kappa coefficient). The
coefficients that gave circular patterns when no guessing was present were either
stretched to one side by guessing (tetrachoric correlation) or maintained a
circular pattern, but with the hard items on the outside and easy items in the
middle (eta coefficient). Carroll's correction for guessing did tend to com-
pensate for guessing effects. However, the MDSCAL solution only matched the no
guessing solution if the correction matched the true guessing level. Otherwise,
the solution was distorted.

Cluster Analysis As with the factor analysis and multidimensional
scaling procedures, the first analysis performed with the two cluster analysis
procedures was the application of the techniques to one-dimensional data with
no guessing. After the no guessing analysis. the techniques were applied to
the one-dimensional data set with .25 guessing to determine guessing effects.
In all cases data-sets with rectangularly distributed traditional difficulty
indices were used to make clearer any item difficulty effects. All of the co-
efficients listed previously were used for these analyses, along with both
cluster analysis procedures, CLUSTER and HICLUSTER. The CLUSTER results will
be presented first.

The CLUSTER results are difficult to interpret because the number of
clusters obtained depends on the cutoff value used to accept an item into a
cluster. Slight changes in the value result in substantial changes in the
number of clusters obtained. Despite these difficulties, a pattern was deter-
mined in the results. The cluster analysis solution determined for the kappa,
phi, agreement, Lijphart, koppa, tau B, and approval coefficients were all
related to the difficulty of the items. That is, items of similar difficulty

-4
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were clustered together. In contrast, the solutions based on Yule's Q,
Yule's Y, eta, tetrachoric, phi/phi max, and gamma tended to form single
large clusters or clusters unrelated to item difficulty. This result is
reasonable, since the latter coefficients all yielded coefficients that are
fairly independent of item difficulty, while the former set of coefficients
are dependent on item difficulty. Individual results will not be presented
for the CLUSTEF procedure, since they are too dependent on the cutoff value
for placing an item in a cluster, and no procedure is known to decide on the
number of clusters.

The HICLUSTER procedure gave somewhat similar results to those of the
cluster procedure. The hierarchicial solutions developed for the gamma, phi/
phi max, tetrachoric, eta, Yule's Q, and Yule's Y coefficients had no discern-
able relationship to item difficulty, while the solution for the Lijphart, phi,
kappa, agreement, tau B, koppa, and approval coefficients were related to item
difficulty. Among this latter group of coefficients, three distinct patterns
of entrance of the items into the clusters were noted. When using the Lijphart,
koppa, and agreement coefficients the clustering procedure initially clustered
the items of extreme difficulty and then worked in toward the more moderate
items. The solutions based on the phi, tau B, and kappa coefficients initially
clustered the middle items and then worked out toward the extremes. The approval
score solution first clustered the easy items and then worked toward the most
difficult. These different patterns of results reflect differences in the effect
of item difficulty on the magnitude of the coefficients. Some have the highest
values for middle difficulty items, while others have the highest value for
items at the extremes of the difficulty range. As with the CLUSTER procedure,
no procedure was known for determining the appropriate number of clusters, so
no individual results will be presented here.

The application of the CLUSTER procedure to the one-dimensional, .25
guessing data gave somewhat predictable results. For the kappa, phi, agreement,
Lijphart, koppa, and tau B coefficients, the clusters formed still had a ten-
dency to be related to the item difficulty, but the relationship was not as
clear. Further, more clusters were formed than when no guessing was present.
This is a result of the reduced magnitude of the coefficients as a result of
guessing. The results for the Yule's Q, Yule's Y, eta, tetrachoric, phi/phi
max, and gamma coefficients changed somewhat from the no guessing case. The
clusters formed for the guessing data had some relationship to the difficulty
of the items, where none was present when guessing was not present. Correcting
the tetrachoric correlations for guessing at any level did not remove this effect.
The results for the approval score were very similar to those presented for the
no guessing data -- the easy items formed a large cluster, while many small
clusters were formed from the more difficult items.

The HICLUSTER procedure gave quite different results. The majority of
the coefficients formed a hierarchical structure by grouping the easier items
first, and then working down toward the hard items. The coefficients that
presented this pattern were the gamma, tetrachoric, Lijphart, koppa, agreement,
kappa, and approval coefficients. The Yule's Q, Yule's Y, phi, and tau B co-

r!
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efficients showed some of this effect, but the results were not as strong. The
phi/phi max and eta coefficients clustered the items in essentially the same
way as when guessing was not present. When the tetrachoric correlation was
corrected for guessing at any level, the effects of item difficulty on the
clustering was removed.

The analysis of the CLUSTER and HICLUSTER results indicate that different
types of clusters are developed depending on the type of coefficient used.
Some coefficients yield clusters related to item difficulty, while others do
not. Guessing tends to force a relationship with item difficulty for both
techniques for most of the coefficients. This will have to be taken into
account when working with multi-dimensional data.

Latent Trait Analysis The analysis of the one-dimensional, no-guessing
data with the LOGIST program gave exactly the results that were expected. The
three-parameter logistic a-parameter estimates were all uniformly high around
a value of 2.0. The b-parameter estimates were evenly spaced in the range from
+3 to -3, and the c-parameters were all estimated as 0.0. These results were
obtained by running the LOGIST program with the default program control values.

Similar results to that obtained for the no-guessing data were also obtained
when the simulated data contained a .05, .15 or .25 guessing level, assuming
multiple choice items with 4 responses. The a- and b-parameter estimates gave
results similar to those described above, and the c-parameters were accurately
estimated at the value used to generate the data. When the level of guessing
used to generate the item data was above .25, however, the default options in
the program were unable to accurately estimate the parameters. With guessing
at the .35 level, the c-parameters were underestimated for all but the hard
items. The a-parameter estimates tended to be low for the moderate and hard
items, and the b-parameter estimates were becoming more erratic. The parameter
estimates for the .25 and .35 cases are presented in Table 7. The parameter
estimates are progressively worse for guessing at the .45, .55, .65, and .75
levels.

The parameter estimates obtained from the LOGIST program for the high
guessing levels could be improved by releasing the constraints on the c-para-
meter. When the range of acceptable c-values was made larger the program did
a good job of estimating the parameters at the .35 and .45 levels. Parameter
estimates for higher guessing levels were still inaccurate.

In evaluating the results of these analyses, it is clear that LOGIST
program does well when the guessing levels are low to moderate, and poorly
when guessing is high. These results should be taken as very favorable overall,
since it is unlikely that guessing on typical multiple choice items is ever as
high as .65 or .75. That is, subjects with ability at -- are unlikely to have
that high a probability of obtaining a correct response to an item. When the
guessing level is reasonable, the program does a very accurate job of estimating
the parameters.

p
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Table 7

Item Parameter Estimates for the One-Dimensional Data
with .25 and .35 Guessing Levels

and Rectangular Distribution of Difficulty

Guessing Level

Item Number .25 .35
a b c a b c

1 2.00 2.44 .245 .15 7.90 .250
2 2.00 2.14 .245 .38 14.57 .250
3 2.00 1.97 .240 .93 2.64 .305

4 1.91 1.73 .245 .63 2.16 .264
5 2.00 1.51 .245 1.95 1.72 .306
6 2.00 1.48 .250 1.93 1.66 .331
7 2.00 1.38 .245 1.86 1.47 .307
8 2.00 1.18 .250 1.47 1.33 .327
9 2.00 1.11 .250 .93 1.14 .250
10 2.00 1.00 .290 1.87 1.09 .328
11 2.00 .88 .245 .94 .73 .250
12 2.00 .88 .245 1.29 1.01 .334
13 2.00 .80 .250 2.00 .82 .321
14 2.00 .72 .245 2.00 .81 .367
15 2.00 .66 .240 2.00 .72 .325
16 2.00 .56 .245 1.37 .41 .250
17 1.88 .51 .250 1.30 .27 .250
18 1.91 .46 .240 2.00 .52 .310
19 2.00 .34 .245 1.41 .29 .250
20 2.00 .30 .245 1.57 .14 .250
21 2.00 .21 .245 1.70 .09 .250
22 2.00 .20 .245 1.70 .05 .250
23 2.00 .17 .250 1.47 -.00 .250
24 2.00 .08 .240 1.65 -.01 .250
25 1.95 .07 .245 1.50 -.15 .250
26 2.00 -.00 .245 1.63 -.21 .250
27 1.78 -.09 .250 1.58 -.22 .250
28 2.00 -.14 .245 1.68 -.36 .250
29 2.00 -.14 .245 2.00 -.39 .250
30 2.00 -.31 .250 2.00 -.29 .250
31 2.00 -.33 .245 2.00 -.48 .250
32 1.83 -.40 .245 2.00 -.50 .250
33 2.00 -.54 .245 2.00 -.52 .250
34 2.00 -.53 .240 2.00 -.64 .250
35 2.00 -.60 .250 2.00 -.74 .250
36 2.00 -.70 .240 1.98 -.73 .250
37 2.00 -.74 .245 2.00 -.79 .256
38 1.97 -. 80 .245 2.00 -.92 .250
39 2.00 -.89 .245 2.00 -.90 .250
40 2.00 -.97 .245 1.85 -1.08 .250
41 2.00 -1.01 .245 2.00 -1.05 .250
42 2.00 -1.18 .245 2.00 -1.06 .250
43 2.00 -1.23 .245 2.00 -1.21 .250
44 2.00 -1.44 .245 2.00 -1.33 .250
45 2.00 -1.60 .245 2.00 -1.38 .250
46 2.00 -1.51 .245 2.00 -1.48 .250
47 2.00 -1.75 .245 2.00 -1.64 .250
48 00 -2.01 .245 2.00 -2.01 .250
492: -2:2 5050 2.88 :_4 1 6l -3:21 50s
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Summary The purpose of this section has been to report the results
of the four techniques considered in this report -- factor analysis, non-
metric multidimensional scaling, cluster analysis, and latent trait analysis--
to one-dimensional data to serve as a frame of reference for the analysis of
multidimensional data. The factor analysis, multidimensional scaling, and
latent trait analysis gave a clear indication of the one-dimensional nature
of the data when no guessing was present. When guessing was present the dis-
torting effect could be seen in the results of each of the techniques. The
precent of variance in the first factor was reduced for the factor analysis
technique, along with reduced first factor loadings and the presence of extra
guessing factors. The two-dimensional representations of the MDSCAL results
were stretched or bent by the guessing effect, and LOGIST parameter estimates
were less accurate when high guessing was present (.35 and above).

The results of the two cluster analysis procedures were harder to interpret
in that it was hard to decide how many clusters were in the data. One consistent
finding was that guessing was found to make the solutions more dependent on item
difficulty. The problem with the determination of the number of clusters seems
to make this technique less useful for forming unidimensional subsets.

Each of The above techniques was applied to two-dimensional data to
determine how well the items could be sorted into unidimensional sets. Only
techniques judgjed to perform this sorting task well were used in later analyses.

Two-Dimensional Simulated Data

The results of the application of the four techniques to the two-dimen-
sional data will be presented in the same order as in the previous section:
factor analysis, multidimensional scaling, cluster analysis, and latent trait
analysis. Three two-dimensional simulated data-sets were subjected to analysis:
(a) a data-set with a rectangular distribution of difficulty and no guessing;
(b) a data-set with a normal distribution of difficulty and normally distributed
guessing around .20; and (c) a data-set with rectangularly distributed item
difficulty and constant guessing at .25. These three data sets were selected
to vary the difficulty of the sorting task and the realistic nature of the data.
All data-sets had 50 items, 1000 cases, and loadings for each item of .90 on
one factor and .00 on the other. The factor loading matrix used to generate
the data is given in Table 8.

Factor Analysis For each of the data-sets, six factor analyses were
possible. These included the analyses using either the principal component
or principal factor method on phi, tetrachoric, or corrected tetrachoric correla-
tions. In some cases, maximum likelihood factor analysis was also run on the
data.

The simplest of the three data-sets containing two factors had a rect-
angular distribution of difficulties and no guessing effect. Of the six
possible analyses, the principal factor analysis on phi coefficients gave the
best overall results. From this analysis, it was easy to identify the items
generated from each factor, and the eigenvalues indicated two major factors and
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Table 8

Factor Loading Used to Generate
the Two-Factor and Three-Factor Simulated Data

Item Two-Factor Three-Factor

Number I II I II III

1 9 0 5 -5 0
2 0 9 5 0 5
3 0 9 5 5 0
4 9 0 5 0 -5
5 9 0 5 0 5
6 0 9 5 5 0
7 0 9 5 0 5
8 9 0 5 -5 0
9 9 0 5 -5 0

10 0 9 5 -5 0

11 0 9 5 0 5
12 9 0 5 0 -5
13 0 9 5 0 5
14 9 0 5 -5 0
15 9 0 5 0 5
16 0 9 5 0 -5
17 0 9 5 0 5

18 9 0 5 5 0
19 0 9 5 0 5
20 9 0 5 0 5
21 9 0 5 0 -5
22 0 9 5 0 -5
23 0 9 5 5 0
24 9 0 5 0 5
25 0 9 5 -5 0

26 9 0 5 -5 0
27 9 0 5 0 5

28 0 9 5 -5 0
29 9 0 5 -5 0
30 0 9 5 5 0
31 0 9 5 5 0
32 9 0 5 0 -5

33 9 0 5 5 034 0 9 5 -5 0
35 9 0 5 -5 0

36 0 9 5 0 -537 0 9 5 0 5
38 9 0 5 5 0
39 0 9 5 0 5
40 9 0 5 0 -5
41 9 0 r -5 0
42 0 9 5 0

43 0 9 5 0 5
44 9 0 5 0 5

45 0 9 5 -5 0
46 9 0 5 5 0
47 9 0 5 5 0
48 0 9 5 0 5
49 0 9 5 5 0
50 9 0 5 5 0

Not__e. All factor loadings are presented without decimal points.
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and two minor were present in the data. The factor loadings resulting from
this analysis are shown in Table 9. All of the other analyses performed on
this data-set yielded factor loading matrices that did not clearly identify
the items in each factor, or that indicated that too many factors were present.

The analysis of the data-set with rectangularly distributed difficulty
and guessing set at .25 gave quite a different result. The principal component
analysis of the tetrachoric correlations corrected for guessing at the .25 level
gave the most accurate classification of items into the factors, but also yielded
a solution with 12 eigenvalues greater than 1.0. The first two eigenvalues were
clearly larger than the rest, however. Unfortunately, the results cannot usually
be expected to be as good. A problem with this procedure is that the level of
guessing on the test items is seldom accurately known. The principal factor
approach did almost as well in correctly indicating the factor used to generate
the items and showed many fewer factors present in the data (four eigenvalues
greater than 1). Therefore, the principal factor approach with phi coefficients
was considered the best procedure for use with this data. The factor loading
matrix for the first two factors of the solution is also given in Table 9. Note
the reduction in the magnitude of the factor loadings with increased guessing
and with the extremity of the proportion correct on the items.

The two data-sets described above are not very realistic because tests
seldom have rectangular distributions of difficulty or constant guessing.
Therefore, a two-dimensional data-set with normally distributed item difficul-
ties and normally distributed guessing levels was also analyzed. The results
of the analysis of these data were uniformly good for all of the techniques.
All techniques gave information that allowed the items on each factor to be
clearly identified. The only difference appeared in the number of factors
indicated in the data. The principal factor analysis of phi coefficients was
the only technique that accurately indicated that two factors were present.
This fact, and the good showing for the other data-sets, seems to indicate
that it is the technique of choice for the two-dimensional data. The results
for this technique for the normally distributed data-set are also given in
Table 9. Note that for all of the phi coefficient analyses reported the load-
ings are much lower than those used to generate the data. The results of the
analysis of the tetrachoric correlations more closely approximate the magnitude
of the loadings used to generate the data, but they could not be used to classify
the items as accurately.

Nonmetric Multidimensional Scalin3 The nonmetric multidimensional
scaling procedure was applied to the same three two-dimensional data-sets
used with the factor analysis procedure: two dimensions, rectangular diffi-
culty, no guessing; two dimensions, rectangular difficulty, constant .25
guessing; and two-dimensions, normal difficulty, normal .20 guessing. The
results of the analysis of these data-sets will be reported in the order given
above.

The MDSCAL program was run on the two-dimensional, rectangular difficulty,
no guessing (SD250R.CGOO) data-set using 11 similarity coefficients. The kappa
and Lijphart coefficients were deleted since they give identical results to the
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Table 9
Factor Loading Matrices from the Analysis

of Three Two-Dimensional Data-sets

Data-set / Technique

Item SD250R.CGOO SD250R.CG25 SD250N.NG20

Principal Factor/Phi Principal Factor/Phi Principal Factor/Phi
I II I II I II

1 15 11 -03 -00 -44 28
2 27 -14 10 05 24 40
3 36 -15 17 00 20 45
4 26 33 -04 08 -41 26
5 26 39 -05 15 -47 24
6 47 -21 22 00 27 45
7 48 -30 25 -01 25 44
8 31 49 -10 27 -43 259 31 52 -05 24 -48 2210 56 -30 35 07 25 4211 54 -35 43 07 26 4012 34 56 -07 41 -48 2513 58 -34 40 06 22 41

14 35 59 -03 37 -41 24
15 35 60 -06 42 -42 20
16 61 -38 46 06 23 38
17 64 -37 51 12 21 41

18 36 62 -11 49 -41 2319 63 -39 53 11 24 4120 37 63 -08 51 -38 2421 43 62 -08 52 -49 2022 64 -39 56 04 24 3823 62 -43 53 05 25 3924 37 64 -60 55 -49 1625 64 -39 58 10 26 4726 38 63 -13 58 -39 2027 39 66 -10 54 -45 2228 64 -41 59 04 21 4329 38 63 -10 57 -48 2030 65 -37 60 07 21 4131 63 -39 58 12 26 4332 38 59 -06 57 -41 2233 37 60 -09 57 -39 24
34 60 -39 59 08 22 3935 36 59 -08 62 -38 2236 58 -36 62 10 20 4237 58 -34 59 08 24 3738 38 55 -06 58 -44 2439 56 -33 58 11 25 3640 34 56 -07 55 -44 2741 33 49 -09 53 -42 1942 51 -26 56 08 22 4
43 47 -28 54 08 25 4

44 25 46 -08 46 -45 3
45 42 -23 52 05 23 4346 25 39 -08 46 -42 1847 22 35 -06 39 -38 1848 29 -13 40 11 25 3849 24 -08 33 03 17 3
50 06 11 ____0 17 -37 36

Note. All factor loadings are presented without decimal points.

4I
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agreement coefficient for dichotomous data. Of the remaining coefficients,
those that gave a linear pattern previously gave two solutions for the two-
dimensional data. The agreement coefficient yielded an oval shaped solution
(See Figure 12) and the kappa, phi, and tau B coefficients resulted in configura-
tions with the points defined by the items distributed along two roughly parallel
lines (See Figure 13). Since the agreement coefficient based solution could not
be used to separate the items into unidimensional sets it was dropped from
further consideration. The other three "linear" coefficients could be used
equally well to separate items into homogeneous sets, although the phi and tau B
coefficients gave solutions with stress values smaller than that for the kappa
coefficient (.061 vs. .101).

Of the six coefficients that gave a circular solution for the one-factor
data, five gave a solution for the two-factor, no guessing data that sorted the
items into two distinct, tight clusters. The five coefficients were: gamma,
phi over phi max, Yule's Q, Yule's Y, and tetrachoric. The results for Yule's Y
is presented in Figure 14. Any of these five coefficients could be used to sort
the items into homogeneous sets.

The sixth "circular" coefficient was the eta coefficient. The solution
obtained using this coefficient could also be used to sort the items into homo-
geneous sets, but the resulting plot had more spread and had a higher stress
value than the previous coefficients (.200 vs. .096 and .104). Figure 15 shows
a plot of this solution.

The remaining coefficient applied to this data set was the approval
score. Figure 16 shows a plot of the MDSCAL solution using this similarity
coefficient. It gave a butterfly shaped pattern with the easiest items in
the middle. Because of the closeness of the points representing the easy
items from different factors in this solution, it may not yield a result that
is useful for sorting items into homogeneous sets. The stress value for the
solution was .117.

When guessing was added to the parameters used to generate the two factor
data, the results were only slightly different for the "linear" coefficients.
The linear sets of points had somewhat greater spread for the hard items, but
the two dimensions were still clearly recognizable. Figure 17 shows the results
for the tau B coefficient.

The "circular" coefficients were affected somewhat more than the "linear"
coefficients. The tight clusters of points found when there was no guessing
effect were spread quite dramatically, showing the effect of guessing. The
results for Yule's Y are shown in Figure 18, demonstrating this effect.

The scatter in the solutions obtained using the eta and approval coefficients
increased with the presence of guessing to the point where the separate subsets
of items were no longer readily identified. These two coefficients were therefore
dropped from further consideration.
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FIGURE 15
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One final analysis was performed on this data-set. The MDSCAL program
was applied to the matrix of tetrachoric correlations corrected for guessing
at the .25 level. The resulting plot of the solution was somewhat clearer
than that for .he uncorrected tetrachoric correlations, but the stress increased
from .146 to .174.

After deleting the agreement, approval, and eta coefficients from consid-

- ation because they gave ambiguous results, eight coefficients remained.
These eight were computed on the two-dimensional data-set with normal difficulty
and normal guessing ,SD250N.NG20). The results were uniformly good, looking
approximately like Figure 14. Because of their similarity, individual results
will not be presented.

The results of the analysis of the two factor data-sets show that the
MDSCAL program applied to any of kappa, phi, tau B, gamma, Yule's Q, Yule's Y,
tetrachoric, or corrected tetrachoric coefficients yielded solutions capable
of sorting the items into the factors used to generate them. Of this set of
coefficients, Kendall's tau B gave the solution with the lowest stress value.

Cluster Analysis Both the CLUSTER and HICLUSTER programs were applied
to the three data-sets analyzed by the factor analysis and nonmetric multi-

dimensional scaling procedures. Thp results obtained from the application of
these two techniques to the data-sets were generally disappointing. While the
factor analysis and multidimensional scaling procedures could accurately classify
the items into the correct factor, in no case, regardless of the coefficient used,
could the cluster analysis procedure do so. This poor showing occurred despite
the fact that a two cluster solution was assumed in advance. If the number of
clusters present in the data had not been Known, the results would have been
much worse, since no reasonable criterion was known for determining the number
of clusters.

To demonstrate the poor quality of the information obtained from the
cluster analysis procedures, the number of misclassified items based on the
analyses of the data using 10 different coefficients is shown in Table 10.
These results were based on a two cluster solution using the HICLUSTER procedure,
and the closest to a two cluster solution that could be obtained from the CLUSTER
procedure by varying the criterion for entering a cluster. The results are
presented for the SD250R.CG25 data-set. The results for the data-set with a
normal distribution of item difficulties were substantially better, with few
errors in classification, but the items in that data-set have been shown to be
very easy to classify using the other procedures.

As can be seen from Table 10, many of the items were placed in clusters
defined by items from the other factor. The agreement and approval scores
yielded particularly bad results for the CLUSTER procedure because many different
clusters were formed, none of which conformed to the structure used to generate
the data. Ironically, the approval score, which gave the worst results for the
CLUSTER program, gave the best results for the HICLUSTER program. Because of the

erratic and often poor results obtained from the cluster analysis procedures,

*1if
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Table 10

Errors in Classification of Items Onto Dimensions
for the CLUSTER and HICLUSTER programs

Using a Variety of Coefficients.

Program

Coefficient
CLUSTER* HICLUSTER

Agreement 24 21

Approval 37 2

Eta 33 10
Gamma 7 8

Lijphart 24 21
Phi 16 22

Tau b 16 21
Tetrachoric 7 8
Yule's Q 7 8
Yule's Y 14 8

* The poor results for some of the analyses using CLUSTER were due to the

fact that a two cluster solution could not be obtained.

they were removed from further consideration as item sorting techniques.

Latent Trait Analysis The application of the LOGIST program to the three

two-factor data-sets gave good results for the no guessing and the normally
distributed .20 guessing case, and fairly good results for the two factor data

with rectangular difficulties and .25 guessing. In the former two cases, the

items generated from one factor had uniformly high discrimination parameter

estimates while those from the other were uniformly low. Items could be cor-

rectly classified 100% of the time. In the latter case, six iterations of the

program, deleting low discriminating items after each iteration, were required

in order to get a set of items that had uniformly high discrimination parameter

estimates. Only one item of the 25 items retained came from the alternate

factor. Unfortunately, the six iterations required about nine minutes of CPU

time, compared to about 30 seconds for factor analysis. Unless the number of

iterations needed to form the homogeneous item sets can be kept to a small

number, this procedure may be prohibitively expensive.

Three-Dimensional Simulated Data The three dimensional data-set generated

for this study was produced to match what was considered to be a reasonable

model of real test data. This data-set had a general first factor with .5

loadings for each item. The second and third factors were bipolar, with half

of the items having .5 loadings on one of the factors and half on the other.

~a~J
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The factor loading matrix used to generate the data is presented in Table 8.
The .5 loadings used for this data-set were thought to be much more reasonable
than the .9 loadings used for the previous data-sets.

Three procedures were applied to this data-set: factor analysis, multi-
dimensional scaling, and latent trait analysis. As mentioned earlier, the
cluster analysis procedure was dropped from consideration because it could not
be used to sort items into homogeneous sets. The factor analysis results will
be presented first.

Factor Anal sis All six of the factor analysis solutions described for
the two factor data were obtained for this data-set. These included the prin-
cipal component and principal factor solutions on phi coefficients, tetrachoric
correlations, and tetrachoric correlations corrected for guessing. Of these,
the analysis of the tetrachoric correlations corrected for guessing clearly
did not give a good representation of the structure used to generate the data.
The principal factor solution could not be obtained at all, and the principal
component solution did not give meaningful factors. This is probably due to
the fact that the tetrachoric correlations were corrected for constant guessing
at a .20 level, while the guessing level in the data varied substantially around
.20. Thus, for many of the items the procedure over corrected for guessing.
These results indicate that correcting for guessing is not a reasonable procedure
with realistic data where the true guessing level of the items is unknown.

Of the other solutions, the principal component solution on the tetrachoriccorrelations, and the principal factor solution on phi coefficients gave the

best results. The varimax rotation of the principal factor solution on phi
coefficients was especially accurate, correctly classifying all of the items.
This solution is presented in Table 11. Note that in this solution separate
factors were defined by the positive and negative ends of the factors used to
generate the data. The good results obtained for the analysis of phi coefficients
reinforces the results obtained on the other simulated data-sets, possibly in-
dicating that the principal factor techniques on phi coefficients should be
used for item sorting with real test data.

Nonmetric Multidimensional Scaling The nonmetric multidimensional scaling

analysis of the three-dimensional data using the eight coefficients selected
on the basis of the previous analyses gave uniformly good results. In all cases
except when the tetrachoric correlations were over corrected for guessing at the
.25 level, every item could be correctly classified onto the appropriate factor.
As with the factor analysis, the items from the opposite ends of the bipolar
factors were put into separate clusters. Those from the same factor were at
opposite ends of the diagram in a two-dimensional plot.

Although all eight coefficients could be used to accurately sort the
items into homogeneous sets, there were slight differences in the stress of
the solutions. Stress values ranged from .114 to .125, with Yule's Y and the
tetrachoric correlations giving the smallest values. The two-dimensional
MDSCAL solution for Yule's Y is given in Figure 19.
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Table 11

Factor Loading Matrix from the Varimax Rotation
of the Four Factor Principal Factor Solution

on the Three Dimensional Data-Set.

Factor

Item

I II III IV

1 14 51 -04 09
2 49 12 16 -06
3 21 -02 41 20
4 -05 24 22 38
5 47 11 09 00
6 23 -11 39 18
7 48 08 15 01
8 16 49 -08 16
9 16 46 -06 13

10 10 51 00 15
11 48 05 07 03
12 -04 26 13 46
13 46 09 17 -02
14 13 48 -07 07
15 54 12 07 -01
16 -07 15 05 52
17 45 16 23 -02
18 14 -03 42 14
19 45 16 16 -10
20 43 10 13 06
21 -07 14 12 41
22 -10 19 18 40
23 15 -08 51 03
24 41 16 11 -06
25 15 45 -02 10
26 12 45 -06 04
27 49 10 15 -03
28 07 47 -14 17
29 14 48 -07 14
30 21 -05 43 10
31 11 -06 46 04
32 01 13 11 48
33 16 -12 31 18
34 12 39 -02 15
35 10 43 -02 10
36 00 11 11 42
37 37 13 20 -11
38 15 -12 45 1539 43 12 14 -03
40 -06 15 19 40
41 12 44 -02 12
42 18 -03 50 09
43 45 11 05 -01
44 48 10 07 -01
45 25 36 -17 20
46 17 -02 42 17
47 06 43 02 01
48 42 14 05 00
49 05 -04 41 06
50 16 -09 38 14

Note. All values are presented without decimal points.

K
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Latent Trait Analysis The analysis of the three factor data with the
LOGIST program resulted in an accurate classification of the items onto the
respective factors. The discrimination parameter estimates for the items from
one end of a single bipolar factor all had uniformly high values of around
1.0, while the rest o4 the items had parameter estimates of .30 or less. As
with the previous , yses, each end of the bipolar factors defined separate
sets of items. To obtain the complete sorting of the items, three runs of the
program were required.

Summary All three procedures used to analyze the three factor data-set
resulted in solutions that could be used to form homogeneous item sets. The
factor analysis procedures defined clear sets of items using the principal
component procedure on tetrachoric correlations and the principal factor pro-
cedure on phi coefficients. The MDSCAL program gave clear solutions using
the phi, tau B, kappa, tetrachoric, corrected tetrachoric, Yule's Y, Yule's Q
and gamma coefficients. Only when the tetrachoric correlations were corrected
at too high a level did the procedure degenerate. A similar finding was
observed with the factor analysis procedures. The LOGIST analysis of the data
also gave accurate sortings of the items, but three program runs were required
to sort all of the items. The results of the application to a more realistic
nine factor data-set will now be reported.

Nine Factor Simulated Data

The nine factor simulated data-set was the most realistic of the simula-
tion data-sets produced. Its characteristics were designed to match those of
an actual achievement test measuring nine content areas. This data-set had a
general factor and eight group factors, the last one being bipolar. The major
loadings on the first eight factors were all positive, reflecting the structure
seen in most achievement tests. The factor loading matrix used to produce this
data-set is given in Table 12.

The results of the analysis of this data-set using factor analytic tech-
niques are similar to those obtained for the three factor data-set. Both
the principal components analysis on tetrachoric correlations and the principal
factor analysis on phi coefficients gave results that were easily used to sort
the items into homogeneous groups. As an example of these results, the varimax
rotated principal factor solution is shown in Table 13. Notice that no general
factor is present in this solution. The general factor was present in the
initial principal factor solution, but was rotated out with the varimax rotation.

Nonmetric Multidimensional Scaling The application of the MDSCAL program
to the complex nine factor data-set using the eight coefficients selected on the
basis of the previous analyses gave generally good results. Only the tetrachoric
correlations corrected for guessing gave poor results. The problem with that
coefficient again seemed to be over correcting for guessing due to the fact that
the guessing level for individual items was unknown. The other seven coefficients
gave good results, with Yule's Y, Yule's Q, gamma, and the tetrachoric correlation
having slightly higher stress values than the phi, tau B and kappa coefficients, A I
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Table 12

Factor Loading Matrix Used to Generate
the Nine-Factor Data-Set.

Item Factor

I II III IV V VI VII VIII IX

1 5 5 0 0 0 0 0 0 0

2 5 5 0 0 0 0 0 0 0
3 5 5 0 0 0 0 0 0 0
4 5 5 0 0 0 0 0 0 0
5 5 5 0 0 0 0 0 0 0
6 5 5 0 0 0 0 0 0 0
7 5 -068 5 0 0 0 0 0 0
8 5 -068 5 0 0 0 0 0 0
9 5 -068 5 0 0 0 0 0 0

10 5 -068 5 0 0 0 0 0 0

11 5 -068 5 0 0 0 0 0 0
12 5 -068 -064 5 0 0 0 0 0
13 5 -068 -064 5 0 0 0 0 0
14 5 -068 -064 5 0 0 0 0 0
15 5 -068 -064 5 0 0 0 0 0
16 5 -068 -064 5 0 0 0 0 0
17 5 -068 -064 -073 5 0 0 0 0
18 5 -068 -064 -073 5 0 0 0 0
19 5 -068 -064 -073 5 0 0 0 0
20 5 -068 -064 -073 5 0 0 0 0
21 5 -068 -064 -073 5 0 0 0 0
22 5 -068 -064 -073 -086 5 0 0 0
23 5 -068 -064 -073 -086 5 0 0 0
24 5 -068 -064 -073 -086 5 0 0 0
25 5 -068 -064 -073 -086 5 0 0 0
26 5 -068 -064 -073 -086 5 0 0 0
27 5 -068 -064 -073 -086 5 0 0 0

28 5 -068 -064 -073 -086 -133 5 0 0
29 5 -068 -064 -073 -086 -133 5 0 0

30 5 -068 -064 -073 -086 -133 5 0 0
31 5 -068 -064 -073 -086 -133 5 0 0

32 5 -068 -064 -073 -086 -133 5 0 0
33 5 -068 -064 -073 -086 -133 5 0 0

* 34 5 -068 -064 -073 -086 -133 5 0 0
35 5 -068 -064 -073 -086 -133 -176 5 0

36 5 -068 -064 -073 -086 -133 -176 5 0
37 5 -068 -064 -073 -086 -133 -176 5 0
38 5 -068 -064 -073 -086 -133 -176 5 0
39 5 -068 -064 -073 -086 -133 -176 5 0
40 5 -068 -064 -073 -086 -133 -176 -273 5
41 5 -068 -064 -073 -086 -133 -176 -273 5
42 5 -068 -064 -073 -086 -133 -176 -273 5
43 5 -068 -064 -073 -086 -133 -176 -273 5

44 5 -068 -064 -073 -086 -133 -176 -273 5
45 5 -068 -064 -073 -086 -133 -176 -273 5
46 5 -068 -064 -073 -086 -133 -176 -273 -6
47 5 -068 -064 -073 -086 -133 -176 -273 -6
48 5 -068 -064 -073 -086 -133 -176 -273 -6
49 5 -068 -064 -073 -086 -133 -176 -273 -6
50 5 -068 -064 -073 -086 -133 -176 -273 -6

Note. All values are presented without decimal points.
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Table 13

Factor Loadings from tne Varimax Rotation
of the Principal Factor Analysis

of the Nine-Factor Data-Set

Item Factor

I II III IV V VI VII VIII

1 -00 01 08 06 08 06 06 07

2 -04 08 02 03 07 -02 06 04

3 -05 02 02 08 03 08 05 10

4 10 08 02 00 05 04 05 09

5 02 11 08 08 03 10 09 07

6 10 03 10 06 04 06 07 02

7 04 14 10 10 13 04 06 39

8 12 03 12 11 14 10 07 37

9 07 07 06 08 -02 05 08 46

10 06 13 10 09 11 06 02 44

11 02 09 07 06 05 11 10 41

12 04 02 07 02 12 46 07 11

13 06 04 -00 08 08, 45 10 09
14 13 03 09 09 03 44 00 -01

i15 03 11 03 09 09 48 07 05

16 04 03 15 03 04 45 01 06

17 06 08 12 06 13 02 41 05

18 05 02 08 01 04 04 37 02

19 05 03 06 09 11 09 47 00

20 04 10 07 11 09 06 39 09

21 06 07 05 09 03 02 48 13

- 22 07 04 04 46 04 06 04 16

23 05 03 08 48 09 05 07 08

24 08 08 04 50 05 07 07 05

25 04 05 04 49 07 04 12 04

26 10 03 17 43 07 07 05 02

27 04 06 04 44 02 06 05 07

28 05 06 11 02 40 06 03 05

29 03 03 05 08 46 05 04 08

30 03 03 05 07 54 07 11 00

31 07 03 08 04 44 03 06 11

32 04 07 -02 06 48 05 06 03

33 02 10 06 04 45 08 12 02

34 04 06 50 05 05 02 09 02

35 05 -05 43 06 06 08 08 14

36 06 06 52 10 08 08 08 06

37 05 06 58 05 06 05 06 11

38 00 02 53 06 11 07 -01 08

39 04 07 50 08 00 09 12 01

40 04 56 09 03 07 05 04 05

41 -02 49 07 03 06 05 08 06

42 -02 59 -01 02 06 00 09 07

43 01 50 00 07 05 -02 03 06

44 -00 50 01 14 06 07 05 09

45 07 56 05 02 05 11 02 07

46 59 -01 07 07 10 07 03 05

47 63 03 07 09 04 05 04 01

48 66 02 02 06 02 07 05 07

49 75 00 04 07 03 08 03 06

50 60 03 02 06 06 04 07 06

Note. All values are presented without decimal points.
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but yet yielding slightly clearer two dimensional plots. The plot for the
Yule's Y coefficient is shown in Figure 20. Examination of the plot will show
that the items in the data-set have been divided into nine clearly distinguished~clusters.

Latent Trait Analysis The LOGIST analysis of the nine factor data-set
gave disappointing results. Although the b- and c-parameter values were accu-
rately estimated, the a-parameters gave very little indication of the items
belonging to a particular factor. The a-parameter estimates varied between
.41 and .81, with no noticable relationship to the factor structure. Despite
the initial ambiguous look of the results, a homogeneous set of six items could
be obtained by running the program eight times, deleting the items with the
lowest a-value estimates after each run. Since such a procedure is clearly
impractical, the LOGIST program does not seem to be a viable procedure for form-
ing unidimensional item sets.

Summary From the analysis of the one-, two-, three-, and nine-dimensional
simulated data-sets, the factor analysis and multidimensional scaling procedures
seem most useful for sorting items into undimensional item sets. Of the factor
analysis procedures, principal component analysis of tetrachoric correlations
and principal factor analysis of phi coefficients gave the best results.

Of the seven coefficients used with the MDSCAL program, those that are
not affected by item difficulty seem to give a slightly better sorting of the
items than those coefficients that are affected by item difficulty. These
coefficients include Yule's Y, Yule's Q, gamma, and the tetrachoric correlation.
Of these, Yule's Y seems to be a good choice for forming item sets because of
its ease of computation and clear solutions for the simulation data.

The results for the latent trait analysis approach indicated that the
procedure is too time consuming for regular use as an item sorting procedure.
Although the procedure can be used to get homogeneous item sets, it requires
many separate analyses and uses substantially more computer time than the other
procedures.

The cluster analysis procedures used on the simpler data-sets were found
to be inadequate for item sorting. No reasonable means could be found to
determine the number of clusters, and the clusters that were formed often con-
tained only some of the items generated from the same factor.

On the basis of these results, only the principal component analysis of
tetrachoric correlations, principal factor analysis of phi coefficients, and
MDSCAL analysis of the seven coefficients mentioned above can be recommended
for forming sets of items compatible with IRT methods. These techniques were
applied to the test data from the Iowa Tests of Educational Development as a
final evaluation of their capabilities,

ITED Data

The ITED data-set was produced by randomly sampling 33 items from the 69

. . . .l
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items in the Expression subtest and 17 items from the 36 items in the Quantita-
tive subtest of Form Y-6 to form a 50 item test that should have had two rela-
tively distinct components. For ease of analysis, the 33 verbal items were
placed first in the test, followed by the 17 quantitative items. For these
items, responses for 1000 examinees were sampled from the responses of 4000
examinees who took the test during the 1975-1976 school year. The examinees
were equally divided among Grades 9, 10, 11, and 12. By producing the data-set
in this way, it was hoped that a real data-set of known structure would be
developed.

Factor Analysis The results of the varimax rotation of the principal
factor solution of phi coefficients for the ITED data-set are presented in
Table 14. The results of the principal component solution for tetrachoric
correlations were similar and will not be shown. As can be seen from the table,
two major factors are present in the data. Factor I is composed of most of the
items from 4 to 23, which are all verbal comprehension items. Factor II is
composed of most of the items from 34 to 50, which are all quantitative items.
Only 17 of the 50 items in the test do not load on these two factors. Of these,
six were spelling items that were mistakenly included with the verbal compre-
hension items (Items 28-33). These results show a relatively clear sorting
of the test items iito homogeneous content areas.

Nonmetric Multidimensional Scaling The results of the application of
of the MDSCAL program to the inter-item similarities obtained from the seven
coefficients retained up to this point were much the same, with stress values
only ranging from .252 to .255 and little variation in the two-dimensional plots
of the items. Figure 21 shows a representative two dimensional plot of the
interrelationships of the 50 items baild on Yule's Y coefficient. The initial
impression obtained from this plot wa that there was no clear separation of
items into the different content areas. Without knowing which items were verbal
and which were quantitative, this procedure could not give information for
accurately sorting the items by type. Examination of higher dimension solutions
also gave no clear results.

The use of knowledge concerning the content area measured by each item
gives a more positive interpretation to these data. Items 34 to 50 are all
quantitative items. The MDSCAL analysis resulted in a two-dimensional repre-
sentation that placed all of these items in close proximity in the right side
of the plot. The results of the procedure actually produced a fairly distinct
separation of these items from the verbal items. Unfortunately, this pattern
was very difficult to distinguish without previous knowledge of the structure
of the test. For these da'.a, at least, the factor analysis procedure gave
information that was more useful for sorting items into unidimensional sets.

Discussion

The purpose of this report has been to investigate techniques for forming
sets of test items that meet the assumptions of most latent trait models. That
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Table 14

Varimax Factor Loading Matrix
from the Principal Factor Solution of Interitem Phi Coefficients

for the ITED Data

Item Factor
III III IV

1 10 11 50 -00 07
2 19 13 39 07 07

3 20 12 45 10 05
4 47 18 17 11 10
5 42 21 20 15 21
6 33 23 28 07 14
7 39 18 21 24 09
8 44 23 23 14 16
9 38 23 19 06 14

10 48 23 19 14 08

11 29 24 29 04 13
12 18 17 40 09 10
13 09 16 53 13 10
14 55 25 14 11 12
15 21 21 43 23 09
16 51 23 14 13 12
17 40 20 27 08 14
18 50 29 16 12 04
19 46 20 21 10 18
20 56 18 18 16 11
21 36 19 23 10 31
22 42 20 14 15 37
23 23 22 22 12 41
24 30 22 23 08 46
25 29 17 20 16 34
26 13 21 45 14 11
27 37 16 20 24 09
28 33 26 21 36 01
29 34 25 24 38 11
30 23 22 23 62 15
31 17 06 39 17 07
32 16 15 41 28 09
33 25 26 24 45 14
34 19 39 18 21 -01
35 10 43 25 09 11
36 27 52 10 12 08
37 19 58 27 16 14
38 24 52 17 15 16
39 39 42 07 13 09
40 20 35 26 05 09
41 27 35 27 07 14
42 19 31 40 10 14
43 25 43 19 09 09
44 23 50 18 24 17
45 26 48 18 18 12
46 18 25 31 10 18
47 18 37 33 11 15
48 25 44 21 04 17
49 33 44 15 03 07
50 19 40 39 09 11

Note. All values are presented without decimal points.



-69-
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is, procedures were evaluated for sorting items into sets that measured a
single latent trait, The investigation of this problem was performed using
three approaches. First, a theoretical model of guessing based on the "know-
ledge or random guessing" principle was produced and some theoretical results
were determined. Although this model is clearly not a correct reflection of
the way individuals really interact with test items, it was hoped that some
insights into the effects of guessing on the observed dimensionality of item
sets would be obtained.

The second approach taken in this investigation was to generate simulated
test data according to the theoretical model produced in the first part of the
study and use that data to evaluate factor analysis, cluster analysis, nonmetric
multidimensional scaling, and latent trait analysis on their ability to form
item sets measuring a single dimension. Data-sets with various numbers of
factors were produced for this purpose, and the amount of guessing affecting
the items was varied. Since the true structure of these data-sets was known,
the quality of the results obtained from the four techniques considered was
easy to evaluate.

The third approach taken in this research was to produce a data-set of
known structure from existing response data on subtests of the Iowa Tests of
Educational Development, and to attempt to recover that structure using the
four techniques mentioned above. The data-set produced contained quantitative
and verbal items, which logically should have resulted in two homogeneous sub-
sets of items. This approach was included in the study since simulation data
never really does an adequate job of modeling the interaction of examinees with
test items. This "real" test data-set was the most stringent test of the pro-
cedures.

The results of the research reported here often matched what would be
expected on the basis of a logical analysis of guessing and dimensionality
effects, but sometimes unanticipated results were obtained. For example, the
theoretical model predicted that, as guessing increased, the proportion of
variance accounted for by the major factor in a test would decrease. This re-
sult was expected and was supported by the analysis of the simulation data.
The review of the literature also suggested such a relationship. However, it
was unexpected that an interaction would be found between the level of guessing
and the saturation of an item with the major component on a test. Highly dis-
criminating items were found to be more affected by low levels of guessing
than low discriminating items,while the reverse was true for high
levels of guessing (above .25). Since most multiple-choice items have average
guessing levels below .25, this implies that guessing is a more serious problem
for good items. This finding had not been seen in the research literature
previously.

It is interesting to note that the theoretical predictions concerning
guessing, including those presented in this paper, are not all consistent with
each other. The results obtained by Plumlee (1952), Carroll (1945), Mattsor
(1965), and Denny and Remmers (1940) certainly are not consistent, and the
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results presented here do not agree with any of these. This multiplicity
of results reflects the complexity of the guessing phenomenon and the numerous
approaches taken to modeling guessing.

The results of the analysis of the simulation data were consistent with
the theoretical predictions from the models. With increased guessing, the pro-
portion of variance accounted for by the first factor in a test decreased, and
"guessing" factors appeared. Also, the magnitude of the loading of individual
items decreased with increased guessing, and the effect was stronger for the
more difficult items. All of these results were expected. What was not expected
was that tests with rectangular distributions of traditional item difficulty
were required to make these effects clearly evident. With more realistic, normal
distributions of item difficulty, the guessing effects were much smaller. This
suggests that guessing effects may not be too serious a problem in actual
testing settings when the item difficulty is not too extreme.

The use of nonmetric multidimensional scaling, cluster analysis, and
latent trait analysis had not been seen previously in the literature, so much
of the results obtained was unanticipated. The two major kinds of MDSCAL plots
for the one dimensional data, linear and circular, were unexpected, but further
analyses showed that they were a function of the effect of item difficulty on
the magnitude of the similarity coefficients. The linear plots indicate a
difficulty effect, while the circular plots indicate that item difficulty has
little effect.

When beginning this research, it was hoped that cluster analysis or latent
trait analysis would serve as an alternative to factor analysis as a technique
for purifying item pools. Unfortunately, the results of this research indicated
that this hope was unjustified. Cluster analysis seems to be unsuited for this
purpose. Possibly, as the research on cluster analysis progresses, better
guidelines will become available for determining the number of clusters present
in the test data and the procedure will, as a result, become more useful.
Currently, -f. cannot be recommended for this use.

Latent trait analysis, the repeated application of the LOGIST program,
did perform the item sorting task well, but in a very cumbersome and expensive
manner. For these reasons, it cannot be recommended.

The multidimensional scaling technique applied in this research did live
up to expectations. For all of the simulation data-sets the procedure presented
information that could be used to identify the unifactor item sets when used
with the phi, kappa, tau B, tetrachoric, gamma, Yule's Q, or Yule's Y coefficients.
Unfortunately, the results were not as good for the real test data. The quantita-
tive items were well clustered, but it was hard to distinguish between the
quantitative cluster and the verbal items. Perhaps with further research better
results can be obtained with real test data. The results do emphasize the fact
that simulation data are not a good substitute for real data.
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The procedures that performed best of all those studied were the
principal component analysis of tetrachoric correlations and the principal
factor analysis of phi coefficients. The interpretation of the factor analysis
results was not as clear as for the MDSCAL results when simulation data were
used, but was more clear for the real data. This was true even for the factor
analysis of phi coefficients, which are supposed to be plagued by difficulty
effects. Difficulty and guessing factors were noted when items of extreme
difficulty were used, but these factors were not found for the more realistic
data-sets.

The factor analysis of tetrachoric correlations worked well when the
principal components technique was used, but not when the principal factor
technique was used. The reason for this may be the added effect of the in-
stability of the tetrachoric correlations when iterative estimates of communal-
ties were made. These problems with the estimates of the tetrachoric correla-
tions were most severe for extremely easy or difficult items.

The end result of the research reported here is that the traditional
factor analysis procedure seems to perform the best of the techniques investi-
gated for identifying items that form unidimensional item sets. The nonmetric
multidimensional scaling procedure worked well for the simulation data, but the
results for the real data were ambiquous. Because the study may have been
biased in favor of the factor analytic procedures, due to the fact that a linear
model was used to generate the simulation data, the real data-set analyses were
the key to the choice of a procedure. The best procedure when using this data-
set was the factor analysis procedure.

Summary and Conclusions

The effects of guessing on techniques for sorting items into sets that
measure the same single dimension were determined using theoretical, simulation,

and real data analyses. The theoretical results showed that, as guessing
increased, the percent of variance accounted for by the major component of a
test decreased. Guessing was also found to affect highly discriminating items
more than low discriminating items. The results of the theoretical analyses
presented here did not match those presented previously in the literature.

The factor analysis of simulated data-sets mirrored the theoretical
results. As guessing increased, the proportion of variance accounted for by
the first factor of the test declined. The magnitude of the loading of the
items on the factor was also reduced. This effect was strongest for the most
difficult items. When items of extreme difficulty were present in the simulated
tests, guessing and difficulty factors were found.

The application of the nonmetric multidimensional scaling procedure to
the simulation data gave different results depending on the similarity coefficient
that was used. If the coefficient were affected by the difficulty of the items,
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a linear pattern was found when the solution was plotted. If the similarity
coefficient were not affected by the difficulty of the items, a circular
plot was obtained. Guessing distorted these patterns, but the MDSCAL , .cedure
still separated the items into homogeneous sets with little difficulty wnen
simulation data were used. The procedure did not give adequate results for
real data.

Cluster analysis and latent trait analysis were not found to be useful
for sorting items into unidimensional sets. The cluster analysis procedure
tended to give too many small clusters, and no way was known for combining
them into larger clusters that corresponded to the known structure of the data.
Repeated application of the LOGIST program to sort the items into undimensional
sets worked, but was too expensive and cumbersome.

Of the procedures studied, the principal component analysis of tetrachoric
correlations and the principal factor analysis of phi coefficients gave the most
consistently positive results. Until a better method can be found, these time
honored procedures should continue to be uLsed to form unidimensional tests.
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APPENDIX A

Similarity Coefficients

Many of the coefficients used in this study are based on the responses
of two items as summarized in a 2x2 or 3x3 contingency table. For consistency
the first 10 coefficients will be described using the following 2x2 table
arrangement:

Item j

0 1

Item i

a+c b+d N=a+b+c+d

where a, b, c, and d are cell frequencies and N is the total number of

examinees.

Agreement Coefficient

The agreement coefficient (Weisberg, 1968) is the proportion of examinees
responding in the same way to both items, and is given by:

C =a+d

Approval Score

The approval score (Weisberg, 1968) is the proportion of examinees passing
both items, and is given by:

d
C2 = .

Eta Coefficient

The eta coefficient (Weisberg, 1968) is a measure of any type of association
between two variables. It is usually used to determine the association between
a nominal variable and an interval variable. This eta coefficient is in no way
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related to the eta coefficient used in analysis of variance procedures. This
eta is given by the following formulae:

1) if ad > bc and b > c,

(ad_- bc (b- c)q=(c + d) (c +-a)tb + c) ;

2) if ad > bc and b < c
(ad- bc) (c - b)

S(b + d) (b + a) (c + b);

3) if ad < bc and d > a,

(ad - bc) (d - a)
n= (a + c)(a + b)(a +-d)'

and 4) if ad < bc and d < a,
(ad -bc) (a - d)
(d + c)(d+ b)(a + d)

Kappa Coefficient

The kappa coefficient (Cohen, 1968) is essentially an agreement score
corrected for chance agreement, and is given by:

(a + d) - [(a + b)(a + c) + (c + d)(b + d)].
k (a 1 - [(a + b)(a + c) + (c + d)(b +-d))

Koppa Coefficient

The koppa coefficient (MacRae, 1970) is the agreement score corrected

for disagreement, and is given by:

a + d - (b + c).k= N

Phi Coefficient

The phi coefficient (MacRae, 1970) is a Pearson product moment correlation
between binary variables, and is given by:

ad - bc

. (a + c)(b + d)(a + b)(c + d)

stowz
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Phi/Phimax Coefficient

The phi/phimax coefficient (Weisberg, 1968) is the phi coefficient
divided by the maximum possible phi coefficient that could be obtained from
a table with the same marginals. This procedure corrects the phi coefficient
for item difficulty effects. The phi/phimax coefficient is given by the
following formulae:

1) if ad > bc and b < c,

ad - bc
(b + d)(b 7a)

2) if ad > bc and b > c,

ad - bc(b c + d)(c + a)

3) if ad < bc and d > a,

ad - bc
(a + c)(a + b)

and 4) if ad < bc and d < a,

ad - bcq'=(d + c)(d + b)

Tetrachoric Correlation

The tetrachoric correlation (MacRae, 1970) is an estimate of the
correlation between two continuous variables having a bivariate normal distri-
bution. It has been assumed that the variables have been artifically dichotomized
to produce the 2x2 table obtained for the two items. The tetrachoric correlation
is approximated by:

rt = sin (T IT A - '

Af+ )S-c

where the value in the parentbesis is in radians. The tetrachoric correlations
were corrected for guessing fro ; the 2x 2 table using the procedure set out by
Carroll (1945).

Yule's Q Coefficient

Yule's Q (MaeRae, 1970) is a measure of the power of one variable to
predict another, and is given by:

A6
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ad - bc
Q ad + bc

Yule's Q is a special case of Goodman and Kruskal's gamma coefficient.

Yule's Y Coefficient

Yule's Y (MaeRae, 1970) is given by:

It can be seen that rt, Q, and Y are transformations of each other.

The remaining four coefficients are best described using the following
table:

Item j

0 1 2

0 a b c a+b+c

item i 1 d e f d + e+f

2 g h i g+h+i

a+d+g 1b+e+'h fc+f+i N

where zero represents failing the item, 2 represents passing the item, and 1

represents a neutral or intermediate response.

Goodman and Kruskal's Gamma Coefficient

Goodman and Kruskal's gamma (Hays, 1963) is given by:

S1 -S 2

r = S I 2

where

S= a (e+f+h+i) + b(f+i) + d(h+i) + ei

and

S2 = c (d+e+ta+h) + b(d+g) + f(g+h) + eg.



-80-

The gamma coefficient was developed as a measure of association between
ordinal variables.

Kendall's tau B Coefficient

Kendall's tau B (Hays, 1963) is given by:

S1 - 2

b -
3

where SI and S2 are as set out above, and

S3 = {SI + S2 + a(b+c) + bc + d(e+f) + ef + g(h+i) + hi] x

[S1 + S2 + a(d+g) + dg + b(e+h) + eh + c(f+i) + fi].

Lijphart's Index

Lijphart's index (MaeRae, 1970) was developed as a measure of voter
agreement, and is given by:

A + d +b+ h+ f
N

where A is the agreement score.

Pearson's Correlation

This coefficient is the traditional product moment correlation coefficient,
and is given by:

N (a+i-c-g) - (T1-T2)(T3-T4)

where
T=g + h + i,
T2 = a. b + c,
T3 = c + f + i,
T4 = a + g + d, 2
D1 - N(TI+T2) - (T1-T2)

and 02 = N(T3+T4) - (T3-T4) 2 .
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